

## TEST REPORT Engineering recommendation G98/1



Requirements for the connection of Fully Type Tested Microgenerators (up to and including 16 A per phase) in parallel with public Low Voltage Distribution Networks.

| Report reference number                                                                                                                                                                                                                                                                                                                                                                                                                                | PVGB2310WDG0087-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Date of issue                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2023-11-22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Total number of pages                                                                                                                                                                                                                                                                                                                                                                                                                                  | 93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Testing laboratory name:                                                                                                                                                                                                                                                                                                                                                                                                                               | Bureau Veritas Shenzhen Co., Ltd. Dongguan Branch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Address                                                                                                                                                                                                                                                                                                                                                                                                                                                | No. 96, Guantai Road (Houjie Section), Houjie Town, Dongguan City, Guangdong Province, 523942, People's Republic of China                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Accreditation:                                                                                                                                                                                                                                                                                                                                                                                                                                         | ACCREDITED<br>Certificate # 2951.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Applicant's name:                                                                                                                                                                                                                                                                                                                                                                                                                                      | Huawei Technologies Co., Ltd.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Address:                                                                                                                                                                                                                                                                                                                                                                                                                                               | Administration Building, Headquarters of Huawei Technologies Co., Ltd., Bantian, Longgang District, Shenzhen, 518129, P.R.C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Test specification                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Standard                                                                                                                                                                                                                                                                                                                                                                                                                                               | G98/1-7:2022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                        | A1 Requirements for Type Testing of Inverter Connected Mirco generators                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Test Report Form No                                                                                                                                                                                                                                                                                                                                                                                                                                    | G98/1 VER.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| TRF Originator                                                                                                                                                                                                                                                                                                                                                                                                                                         | Bureau Veritas Shenzhen Co., Ltd. Dongguan Branch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Master TRF                                                                                                                                                                                                                                                                                                                                                                                                                                             | Dated 2022-11-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Test item description                                                                                                                                                                                                                                                                                                                                                                                                                                  | Photovoltaic (PV) and battery inverter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Trademark                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                        | HUAWEI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Model / Type:                                                                                                                                                                                                                                                                                                                                                                                                                                          | SUN2000-2KTL-L1, SUN2000-3KTL-L1, SUN2000-3.68KTL-L1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| business/cps/about-us/terms-conditions/ and is intended for your excl<br>permitted only with our prior written permission. This report sets forth<br>representative of the quality or characteristics of the lot from which a 1<br>requested by you and the results thereof based upon the information<br>based on simple acceptance criteria without taking measurement unc<br>any material error or omission caused by our nealigence or if you rega | ons of lesting as posted at the date of issuance of this report at http://www.bureatwentas.com/nome/about/us/out-<br>bis/ve use. Any copying or replication of this report to r for any other person or entity, or use of our name or trademark, is<br>our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or<br>est sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests<br>hat you provided to us. Measurement uncertainty is only provided upon request for accredited tests. Statements of conformity are<br>entainty into account, unless otherwise requested in writing. You have 60 days from date of issuance of this report to notify us of<br>ine measurement uncertainty; provided, however, that such notice shall be in writing and shall specifically address the issue you<br>hall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report |

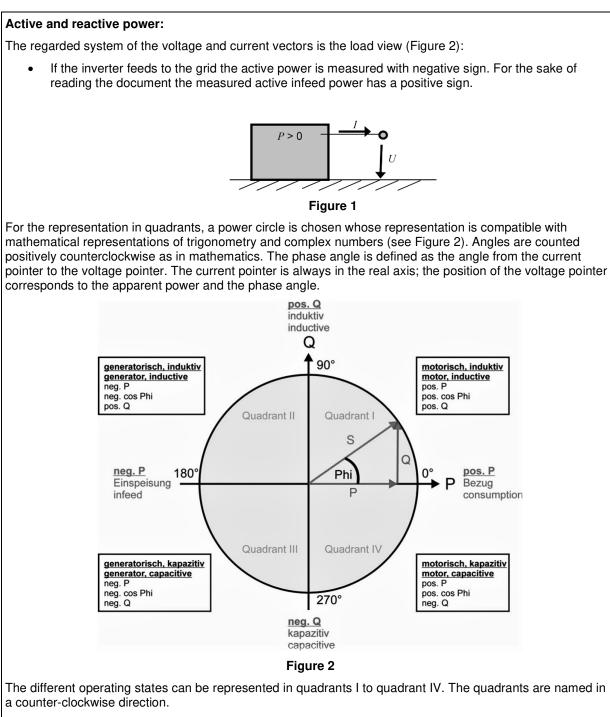
contents

No. 96, Guantai Road (Houjie Section), Houjie Town, Dongguan City, Guangdong Province, 523942, People's Republic of China Page 1 of 93



| Ratings:                        | SUN2000-2KTL-L1        | SUN2000-3KTL-L1 | SUN2000-3.68KTL-L1 |
|---------------------------------|------------------------|-----------------|--------------------|
| Max. Input PV voltage [V]       |                        | 600             |                    |
| MPP PV voltage range [V]        |                        | 90-530          |                    |
| Max. Input PV current [A]       |                        | 13,5 / 13,5     |                    |
| Isc PV [A]:                     | 20,0 / 20,0            |                 |                    |
| Output AC voltage [V]           | L/N/PE, 230Va.c., 50Hz |                 |                    |
| Max. Output AC current [A]      | 10,0                   | 15,0            | 16,0               |
| Nominal Output power [kW]:      | 2,00 3,00 3,68         |                 | 3,68               |
| Max. Output power [kVA]         | 2,20 3,30 3,68         |                 |                    |
| Max. Battery input voltage [V]: | 600                    |                 |                    |
| Max. Battery current [A]        | 15,0                   |                 |                    |




| Testing Locati              | on:                | Bureau Veritas Shenzhen Co.,                                                                                                   | Ltd. Dongguan Branc | h        |
|-----------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------|---------------------|----------|
| •                           | :                  | No. 96, Guantai Road (Houjie Section), Houjie Town, Dongguan City,<br>Guangdong Province, 523942, People's Republic of China   |                     |          |
|                             |                    |                                                                                                                                | <b>1</b>            |          |
| Tested by<br>(name and sign | ature):            | Chason Ye                                                                                                                      | Chason Ye           |          |
| Approved by (name and sign  | ature)             | Ryan He                                                                                                                        | Ryuntte             |          |
| Manufacturer's              | s name:            | Huawei Technologies Co., Ltd                                                                                                   |                     |          |
| Manufacturer address:       |                    | Administration Building, Headquarters of Huawei Technologies Co.,<br>Ltd., Bantian, Longgang District, Shenzhen, 518129, P.R.C |                     |          |
| Factory's nam               | e 1:               | Huawei Machine Co., Ltd.                                                                                                       |                     |          |
| Factory addres              | s 1:               | No. 2 New City Avenue, Songshan Lake Sci. & Tech. Industry Park, 523808, Dongguan, Guangdong, People's Republic of China.      |                     |          |
| Factory's nam               | e 2:               | Huizhou Huazhi New Energy Technology Co., Ltd.                                                                                 |                     |          |
| Factory address 2:          |                    | No.8 Factory, Xinhua Avenue, C<br>Zone, Huizhou, Guangdong, Per                                                                |                     |          |
| Document Hist               | tory               |                                                                                                                                |                     |          |
| Date                        | Internal reference | Modification / Cha                                                                                                             | ange / Status       | Revision |
| 2023-11-22                  | Chason Ye          | Initial report wa                                                                                                              | as written          | 0        |

Supplementary information:



| Test items particulars                                                                |                                                                                                           |
|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| Equipment mobility                                                                    | Permanent connection                                                                                      |
| Operating condition                                                                   | Continuous                                                                                                |
| Class of equipment                                                                    | Class I                                                                                                   |
| Protection against ingress of water:                                                  | IP65 according to EN 60529                                                                                |
| Mass of equipment [kg]                                                                | 12,6                                                                                                      |
| Test case verdicts                                                                    |                                                                                                           |
| Test case does not apply to the test object                                           | N/A                                                                                                       |
| Test item does meet<br>the requirement:                                               | P(ass)                                                                                                    |
| Test item does not meet the requirement:                                              | F(ail)                                                                                                    |
| Testing                                                                               |                                                                                                           |
| Date of receipt of test item:                                                         | 2023-10-24                                                                                                |
| Date(s) of performance of test:                                                       | 2023-10-24 to 2023-11-22                                                                                  |
| General remarks:                                                                      |                                                                                                           |
| The test result presented in this report                                              | relate only to the object(s) tested.                                                                      |
| The report shall state compliance of the                                              | e tested objects with the Type A requirements of G98.                                                     |
| All information within this test report lim schematics, layouts, manual and datas     | nited to the type label, warning markings, trademark, block diagram, sheets are provided by the customer. |
| "(see Annex #)" refers to additional info<br>"(see appended table)" refers to a table |                                                                                                           |
| Throughout this report a comma is use                                                 | d as the decimal separator.                                                                               |
| Conformity statements are decided in a unless otherwise normatively specified of      | ccordance with IEC GUIDE 115:2021 Procedure 2 (accuracy method), or contractually agreed.                 |
| • "Pn" for the nominal active pow                                                     | er:                                                                                                       |
| $P_n = V_n \times I_n \times \cos \phi_n$ (single-Ph                                  | ase); $P_n = \sqrt{3} V_n x I_n x \cos \varphi_n$ (three-Phase)                                           |
| • "P <sub>m</sub> " for the momentary power                                           |                                                                                                           |
| <ul> <li>"(c)" for over-excited</li> </ul>                                            |                                                                                                           |
| • "(i)" for under-excited                                                             |                                                                                                           |





- Quadrant I: Ohmic inductive load (coil)
- Quadrant II: One active power supplying generation plant with simultaneous reactive power consumption
- Quadrant III: A generation plant supplying active and reactive power
- Quadrant IV: Ohmic-capacitive load (capacitor)

No. 96, Guantai Road (Houjie Section), Houjie Town, Dongguan City, Guangdong Province, 523942, People's Republic of China Page 5 of 93 Tel: +86 769 8998 2098 Fax: +86 769 8599 1080 Email: <u>customerservice.da@bureauveritas.com</u> TRF No. G98/1 VER.2



### This Test Report consists of the following documents:

- 1. Test Results
- 2. Annex No. 1 EMC Test Report
- 3. Annex No. 2 Pictures of the unit
- 4. Annex No. 3 Test equipment list







|                                                                                                                                                                                                         | Copy of marking plate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| нил                                                                                                                                                                                                     | 型号 Model: SUN2000-3.68KTL-<br>L1<br>名称 Name: 太阳能光伏逆变器<br>SOLAR INVERTER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| MPP<br>最大<br>。<br>输入池<br>电输出<br>。<br>输额额<br>额额<br>定定<br>。<br>额额<br>定定<br>、<br>数<br>数<br>一<br>、<br>动<br>之<br>。<br>、<br>、<br>、<br>、<br>、<br>、<br>、<br>、<br>、<br>、<br>、<br>、<br>、<br>、<br>、<br>、<br>、<br>、 | <ul> <li>入电圧 d.c. Max. Input Voltage: 600 V</li> <li>电压范围 d.c. MPPT Range: 90 - 530 V</li> <li>入电流 d.c. Max. Input Current: 13.5 A/13.5 A</li> <li>露电流 Isc PV: 20 A/20 A</li> <li>Battery: 600 VDC Max; 15 A Max</li> <li>U压 a.c. Output Nominal Voltage: 230/240 V ~</li> <li>阿率 a.c. Output Nominal Voltage: 230/240 V ~</li> <li>阿本 a.c. Output Rated Power: 3.68 kW</li> <li>Bithubar a.c. Output Rated Apparent Power: 3.68 kVA</li> <li>Bithubar a.c. Output Max. Apparent Power: 3.68 kVA</li> <li>Bithubar a.c. Output Max. Apparent Power: 3.68 kVA</li> <li>Bithubar a.c. Output Max. Current: 16 A</li> <li>By Power factor: 0.8(lagging) - 0.8(leading)</li> <li>Deparating Temperature Range: -25 - +60 °C</li> <li>愛别 Overvoltage Category: II (DC)/III (AC)</li> <li>Bith Inverter Topology: Non - Isolation</li> <li>UE范围 Battery voltage range: 350 - 600 Vd.c.</li> <li>Fay Protection Class: I</li> </ul> |  |  |
| HUAV                                                                                                                                                                                                    | 本有限公司<br>EI TECHNOLOGIES CO., LTD.<br>Huawei, Bantian, Longgang District, Shenzhen, 518129, P.R.C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |



#### General product information:

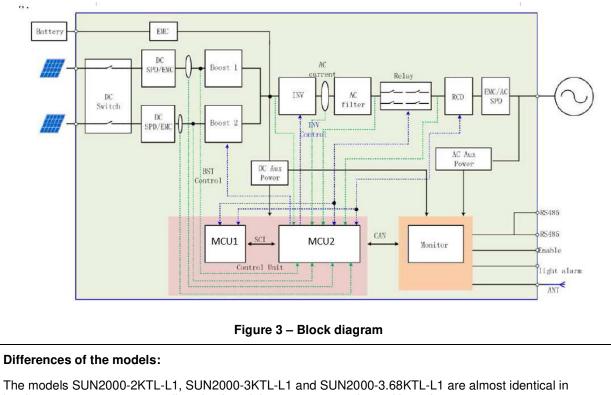
The unit converts DC voltage into AC voltage.

The DC input of unit can be supplied from PV array and Batteries.

The charging current to batteries from PV array and power grid, battery management unit is integrated in External Energy storage.

The unit is a single-phase type and it can be used in parallel.

The unit is providing EMC filtering at the output toward mains. The unit does not provide galvanic separation from input to output (transformerless). The output is switched off redundant by the high power switching bridge and two relays. This assures that the opening of the output circuit will also operate in case of one error.


#### Description of the electrical circuit:

The internal control is redundant built. It consists of Main MCU(U3) and slave MCU(U33).

The Main MCU(U3) can control the relays, measures voltage, and frequency, AC current with injected DC, insulation resistance and residual current, In addition it tests the array insulation resistance and the RCMU circuit before each start up.

The slave MCU (U33) is using for controlling the relays, measuring the voltage , frequency, inject a dc AC current, the residual current, and communicating with the master MCU (U3). And if the communicating with the master MCU, the slave MCU will disconnect the relays.

The unit provides two relays in series on Line and Neutral conductors. When single-fault applied to one relay, alarm an error code in display panel, another redundant relay provides basic insulation maintained between the PV array and the mains. All the relays are tested before start up. Both controllers Main MCU(U3), Slave MCU(U33) can open the relays.



hardware except current sampling circuit and the output power derated by software.



# The product was tested on: The product(s) with below model and serial number was tested on: Model: SUN2000-3.68KTL-L1 Serial number: 1020B0185447 Model: SUN2000-3.68KTL-L1 Serial number: 1020B0185447 HIFTI SSUSSED: SSUSSED:

Hardware version: V200R001 Software version: V200R001

All tests were performed on SUN2000-3.68KTL-L1. Tests of the EUT of SUN2000-3.68KTL-L1 not applicable for the models SUN2000-2KTL-L1 and SUN2000-3KTL-L1 were performed on the concerned models and a statement is given at the relevant test.

Some test results refer to test report PVUK191217N030-R1 issued by Bureau Veritas Shenzhen Co., Ltd. Dongguan Branch, dated on September 16, 2020, details refer to the note in the relative test clauses.



| Engineering recommendation G98/1 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            |         |  |
|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|---------|--|
| Clause                           | Requirement – Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Result – Remark            | Verdict |  |
|                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            |         |  |
| Annex A1                         | Requirements for Type Testing of Inverter 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Connected Micro-generators |         |  |
| A 1.1                            | General                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Considered.                | Р       |  |
|                                  | This Annex describes a methodology for<br>obtaining type certification or type verification<br>for Micro-generators which are connected to<br>the Distribution Network via an Inverter.                                                                                                                                                                                                                                                                                                                                                                                                 | Test results see below.    |         |  |
|                                  | Typically, all interface functions are contained<br>within an Inverter and in such cases it is only<br>necessary to have the Inverter Fully Type<br>Tested. In the case where a package of<br>specific separate parts are used to assemble<br>a Fully Type Tested Micro-generator the<br>completed Micro-generator's Interface<br>Protection shall not rely on interconnection<br>using cables which could be terminated<br>incorrectly on site ie the interconnections<br>shall be made by plug and socket which the<br>Manufacturer has made and tested prior to<br>delivery to site. |                            |         |  |
|                                  | The Interface Protection shall satisfy the requirements of all of the following standards. Where these standards have more than one part, the requirements of all such parts shall be satisfied, so far as they are applicable.                                                                                                                                                                                                                                                                                                                                                         |                            |         |  |
|                                  | BS EN 61000 (Electromagnetic Standards)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                            |         |  |
|                                  | BS EN 60255 (Electrical Relays)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            |         |  |
|                                  | BS EN 61810 (Electrical Elementary Relays)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            |         |  |
|                                  | BS EN 60947 (Low Voltage Switchgear and Control gear)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            |         |  |
|                                  | BS EN 61869 (Instrument Transformers:<br>Additional requirements for current<br>transformers)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            |         |  |
|                                  | Currently there are no harmonised functional<br>standards that apply to the Microgenerator's<br>Interface Protection. Consequently, in cases<br>where power electronics is used for energy<br>conversion along with any separate Interface<br>Protection unit they will need to be brought<br>together and tested as a complete<br>Microgenerator as described in this EREC<br>G98, and recorded in a format similar to that<br>shown in Form C (Appendix 3).                                                                                                                           |                            |         |  |
|                                  | Where the Interface Protection is physically<br>integrated within the overall Micro-generator<br>control system, the functionality of the<br>Interface Protection unit should not be<br>compromised by any failure of other                                                                                                                                                                                                                                                                                                                                                             |                            |         |  |



|         | Engineering recommen                                                                                                                                                                                                  | dation G98/1                          |         |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|---------|
| Clause  | Requirement – Test                                                                                                                                                                                                    | Result – Remark                       | Verdict |
|         | elements of the control system (fail safe).                                                                                                                                                                           |                                       |         |
|         | This Annex applies to Micro-generators:                                                                                                                                                                               |                                       |         |
|         | • with or without or energy storage systems connected on the energy source or prime mover side of the Micro-generator; and                                                                                            |                                       |         |
|         | • with or without load management devices.                                                                                                                                                                            |                                       |         |
| A 1.2   | Type Verification Functional Testing of the Interface Protection                                                                                                                                                      | Considered<br>Test results see below. | Р       |
|         | Type testing is the responsibility of the Manufacturer.                                                                                                                                                               |                                       |         |
|         | The type testing can be done by the<br>Manufacturer of an individual component or<br>by an external test house or by the supplier<br>of the complete system, or any combination<br>of them as appropriate.            |                                       |         |
|         | The type testing will verify that the operation of the Interface Protection shall result:                                                                                                                             |                                       |         |
|         | a) in the safe disconnection of the Micro-<br>generator from the DNO's Distribution<br>Network in the event that the protection<br>settings specified in Table 2 are exceeded;<br>and                                 |                                       |         |
|         | b) in the Micro-generator remaining<br>connected to the DNO's Distribution Network<br>while Distribution Network conditions are:                                                                                      |                                       |         |
|         | 1) within the envelope specified by the<br>settings plus and minus the tolerances<br>specified for equipment operation in Table 2;<br>and                                                                             |                                       |         |
|         | 2) within the time delay settings specified in Table 2.                                                                                                                                                               |                                       |         |
|         | Wherever possible the type testing of a<br>Micro-generator designed for a particular<br>type of prime mover should be proved under<br>normal conditions of operation for that<br>technology (unless otherwise noted). |                                       |         |
| A 1.2.1 | Disconnection times                                                                                                                                                                                                   | Considered.                           | Р       |
|         | The minimum trip time delay settings, for<br>over / under voltage, over / under frequency<br>and loss of mains tests below, are presented<br>in Table 2.                                                              | Test results see below                |         |
|         | For over / under voltage, over / under<br>frequency and loss of mains tests,<br>reconnection shall be checked as detailed<br>below.                                                                                   |                                       |         |
| A 1.2.2 | Over / Under Voltage                                                                                                                                                                                                  | Considered.                           | Р       |
|         | The Interface Protection shall be tested by                                                                                                                                                                           | Test results see below                |         |



|        | Engineering recommend                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | dation G98/1    |         |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------|
| Clause | Requirement – Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Result – Remark | Verdict |
|        | operating the Controller in parallel with a<br>variable AC test supply, as an example see<br>Figure A1.1. Correct protection and ride-<br>through operation shall be confirmed. The set<br>points for over and under voltage at which<br>the Interface Protection disconnects from the<br>supply will be established by varying the AC<br>supply voltage. The disconnect sequence<br>should be initiated when the network<br>conditions mean the protection should trip in<br>accordance with the settings in Table 2,<br>otherwise normal operation should continue.                       |                 |         |
|        | To establish the certified trip voltage, the test voltage should be applied in steps of $\pm 0.5\%$ of setting for a duration that is longer than the trip time delay, for example 1 s in the case of a delay setting of 0.5 s. It will be necessary to carry out five tests for each trip setting. The test voltage at which this trip occurred is to be recorded as the certified trip voltage.                                                                                                                                                                                           |                 |         |
|        | To establish the certified trip time, the test<br>voltage should be applied starting from $\pm$<br>1,8% below the certified trip voltage in a step<br>of at least $\pm$ 0,5% of setting for a duration that<br>is longer than the trip time delay, for example<br>1 s in the case of a delay setting of 0,5 s.<br>Where the Interface Protection functionality is<br>implemented in the Controller it will be<br>necessary to carry out five tests for each trip<br>setting. The longest trip time is to be<br>recorded as the certified trip time.                                         |                 |         |
|        | For example to test overvoltage setting stage<br>1 which is required to be set at nominally<br>262,2 V the circuit can be set up as shown<br>below and the voltage adjusted to 254,2 V. In<br>integrated designs where there is no<br>separate way of establishing that the Micro-<br>generator is disconnected, the Micro-<br>generator should be powered up to export a<br>measurable amount of energy so that it can<br>be confirmed that the Micro-generator has<br>ceased to output energy.                                                                                            |                 |         |
|        | The variable voltage supply is then increased<br>in steps of no more than 0,5% of nominal<br>(1,15 V) maintaining the voltage for at least<br>1,5 s (trip time plus 0,5 s) at each voltage<br>level. At each voltage level confirmation that<br>the Micro-generator has not tripped after the<br>time delay is required to be taken. At the<br>voltage level at which a trip occurs then this<br>should be recorded as the provisional trip<br>voltage. Additional tests just below and if<br>necessary just above the provisional trip<br>voltage will allow the actual trip voltage to be |                 |         |



|        | Engineering recommen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | dation G98/1    |         |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------|
| Clause | Requirement – Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Result – Remark | Verdict |
|        | established on a repeatable basis. This value<br>should be recorded. For the sake of this<br>example the actual trip level is assumed to<br>have been established as being 261 V. The<br>variable voltage supply should be set to 257<br>V, the Micro-generator set to produce a<br>measurable output (if necessary) and then<br>the voltage raised to 265 V in a single step.<br>The time from the step change to the<br>disconnection of the Micro-generator should<br>be recorded as the trip time.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |         |
|        | The Micro-generator then needs to operate at<br>4 V below the nominal overvoltage stage 1<br>setting which is 258,2 V for a period of at<br>least 2 s without tripping and while producing<br>a measurable output. This can be confirmed<br>as a no trip in the relevant part of the Type<br>Test Verification Report, Appendix 3 Form C.<br>The voltage then needs to be stepped up to<br>the next level of 269,7 V for a period of 0,98 s<br>and then back to 258,2 V during which time<br>the output of the relay should continue with<br>no interruption though it may change due to<br>the change in voltage, this can be recorded<br>as a no trip for the second value. The step up<br>and step down test needs to be done a<br>second time with a max value of 277,7 V and<br>with a time of 0,48 s. The Micro-generator is<br>allowed to shut down during this period to<br>protect itself as allowed by footnote 3 of<br>Table 2 of this document, but it shall resume<br>production again when the voltage has been<br>restored to 258,2 V or it may continue to<br>produce an output during this period. There is<br>no defined time for resumption of production<br>but it shall be shown that the Micro-generator<br>restart timer has not operated so it begins<br>producing again in less than 20 s. |                 |         |
|        | Note that this philosophy should be applied to<br>the under voltage, over and under frequency,<br>RoCoF and Vector shift stability tests which<br>follow.<br>Note:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 |         |
|        | (1) The frequency required to trip is the setting $\pm$ 0,1 Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 |         |
|        | <ul> <li>(2) Measurement of operating time should be measured at a value of 0,3 Hz (suggestion – 2 x tolerance) above/below the setting to give "positive" operation</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |         |
|        | (3) The "No trip tests" need to be carried out<br>at the relevant values and times as shown in<br>the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |         |



| Engineering recommendation G98/1 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |         |
|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|---------|
| Clause                           | Requirement – Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Result – Remark         | Verdict |
|                                  | Type Test Verification Report, Appendix 3<br>Form C to ensure that the protection will not<br>trip in error.<br>Figure A1.1. Micro-generator Test set up – Over / Under Voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |         |
| A 1.2.3                          | Over / Under Frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Considered.             | Р       |
|                                  | The Micro-generator shall be tested by<br>operating in parallel with a low impedance,<br>variable frequency test supply system, see<br>figure A1.2. Correct protection and ride-<br>through operation should be confirmed during<br>operation of the Micro-generator. The set<br>points for over and under frequency at which<br>the Micro-generator disconnects from the<br>supply will be established by varying the test<br>supply frequency.                                                                                                                                                                                                                                                                                                                                                                                                                              | Test results see below. |         |
|                                  | To establish a trip frequency, the test<br>frequency should be applied in a slow ramp<br>rate of less than 0,1 Hzs-1, or if this is not<br>possible in steps of 0,05 Hz for a duration<br>that is longer than the trip time delay, for<br>example 1 s in the case of a delay setting of<br>0,5 s. The test frequency at which this trip<br>occurred is to be recorded. Additional tests<br>just above and below the trip frequency<br>should be undertaken to show that the test is<br>repeatable and the figure at which a<br>repeatable trip occurs should be recorded on<br>the Type Test Verification Report, Appendix 3<br>Form C.                                                                                                                                                                                                                                       |                         |         |
|                                  | To establish the trip time, the test frequency<br>should be applied starting from 0,3 Hz below<br>or above the recorded trip frequency and<br>should be changed to 0,3 Hz above or below<br>the recorded trip frequency in a single step.<br>The time taken from the step change to the<br>Microgenerator tripping is to be recorded on<br>the Type Test Verification Report, Appendix 3<br>Form C. It should be noted that with some<br>loss of mains detection techniques this test<br>may result in a faster trip due to operation of<br>the loss of mains protection. To avoid this it is<br>necessary to establish an accurate frequency<br>for the trip to enable the use of a much<br>smaller step change to initiate the trip and<br>establish a trip time. This may require the test<br>to be repeated several times to establish that<br>the time delay is correct. |                         |         |
|                                  | To establish correct ride-through operation,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                         |         |



|         | Engineering recommendation G98/1                                                                                                                                                                                                                                                                                                                                                                 |                         |         |  |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|---------|--|
| Clause  | Requirement – Test                                                                                                                                                                                                                                                                                                                                                                               | Result – Remark         | Verdict |  |
|         | the test frequency should be applied at each<br>setting ± 0,2 Hz and for the relevant times<br>shown in the Type Test Verification Report,<br>Appendix 3 Form C.<br>Figure A1.2. Test set up – Over / Under Frequency<br>Micro-generator<br>Micro-generator<br>or Simulator                                                                                                                      |                         |         |  |
| A 1.2.4 | Loss of Mains Protection                                                                                                                                                                                                                                                                                                                                                                         | Considered.             | Р       |  |
|         | The tests should be carried out in<br>accordance with BS EN 62116 and a subset<br>of results should be recorded as indicated in<br>the Protection – Loss of Mains test section of<br>the Type Test Verification Report, Appendix 3<br>Form C.                                                                                                                                                    | Test results see below. |         |  |
| A 1.2.5 | Reconnection                                                                                                                                                                                                                                                                                                                                                                                     | Considered.             | Р       |  |
|         | Further tests will confirm that once the AC<br>supply voltage and frequency have returned<br>to be within the stage 1 settings specified in<br>Table 2 following an automatic protection trip<br>operation there is a minimum time delay of<br>20 s before the Micro-generator output is<br>restored (ie before the Micro-generator<br>automatically reconnects to the Distribution<br>Network). | Test results see below. |         |  |
| A 1.2.6 | Frequency Drift and Step Change Stability                                                                                                                                                                                                                                                                                                                                                        | Considered.             | Р       |  |
|         | test<br>The tests will be carried out using the same<br>circuit as specified in A1.2.3 above and<br>following confirmation that the Micro-<br>generator has passed the under and over<br>frequency trip tests and the under and over<br>frequency stability tests.                                                                                                                               | Test results see below. |         |  |
|         | Four tests are required to be carried out with<br>all protection functions enabled including loss<br>of mains. For each stability test the Micro-<br>generator should not trip during the test.                                                                                                                                                                                                  |                         |         |  |
|         | For the step change test the Micro-generator should be operated with a measurable output                                                                                                                                                                                                                                                                                                         |                         |         |  |
|         | at the start frequency and then a vector shift<br>should be applied by extending or reducing<br>the time of a single cycle with subsequent<br>cycles returning to the start frequency. The<br>start frequency should then be maintained for<br>a period of at least 10 s to complete the test.<br>The Micro-generator should not trip during<br>this test.                                       |                         |         |  |



|         | Engineering recommen                                                                                                                                                                                                                                                                                                                                                   | dation G98/1                           |         |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|---------|
| Clause  | Requirement – Test                                                                                                                                                                                                                                                                                                                                                     | Result – Remark                        | Verdict |
|         | For frequency drift tests the Micro-generator<br>should be operated with a measurable output<br>at the start frequency and then the frequency<br>changed in a ramp function at 0,95 Hzs-1 to<br>the end frequency. On reaching the end<br>frequency it should be maintained for a<br>period of at least 10 s. The Micro-generator<br>should not trip during this test. |                                        |         |
|         | The results shall be recorded on the Type<br>Test Verification Report, Appendix 3 Form C.                                                                                                                                                                                                                                                                              |                                        |         |
| A 1.2.7 | Active power feed-in at under-frequency                                                                                                                                                                                                                                                                                                                                | Considered.                            | Р       |
|         | Tests shall be undertaken to verify the Active Power feed-in at under-frequency.                                                                                                                                                                                                                                                                                       | Test results see below.                |         |
|         | The tests for providing evidence of the frequency dependent active power feed-in of the Microgenerator shall be carried out on a network simulator.                                                                                                                                                                                                                    |                                        |         |
|         | Measurements shall be carried out at the following                                                                                                                                                                                                                                                                                                                     |                                        |         |
|         | Operating points:                                                                                                                                                                                                                                                                                                                                                      |                                        |         |
|         | a) 50 Hz ± 0,01Hz;                                                                                                                                                                                                                                                                                                                                                     |                                        |         |
|         | b) a point between 49,5 Hz and 49,6 Hz;                                                                                                                                                                                                                                                                                                                                |                                        |         |
|         | c) a point between 47,5 Hz and 47,6 Hz.                                                                                                                                                                                                                                                                                                                                |                                        |         |
|         | The operating point b) and c) shall be maintained for at least 5 minutes.                                                                                                                                                                                                                                                                                              |                                        |         |
|         | The test is regarded as passed if:                                                                                                                                                                                                                                                                                                                                     |                                        |         |
|         | • the Micro-generator does not disconnect<br>from the network at the operating points a) to<br>c) when the network frequency is changed<br>and                                                                                                                                                                                                                         |                                        |         |
|         | <ul> <li>the Micro-generator does not reduce<br/>output energy at point b) and</li> </ul>                                                                                                                                                                                                                                                                              |                                        |         |
|         | • the power reduction at point c) is less than<br>or equal to the allowed power reduction<br>according to paragraph 9.4.2                                                                                                                                                                                                                                              |                                        |         |
|         | The following data shall be documented:                                                                                                                                                                                                                                                                                                                                |                                        |         |
|         | <ul> <li>variation of the network frequency with time;</li> </ul>                                                                                                                                                                                                                                                                                                      |                                        |         |
|         | • the measured Active Power with time.                                                                                                                                                                                                                                                                                                                                 |                                        |         |
| A 1.2.8 | Micro-generators which include Electricity Storage                                                                                                                                                                                                                                                                                                                     | Considered.<br>Test results see below. | Р       |
|         | This paragraph provides a method for<br>demonstrating compliance with the optional<br>performance characteristic as discussed in<br>the foreword. The Manufacturer shall                                                                                                                                                                                               |                                        |         |



|         | Engineering recommendation G98/1                                                                                                                                                                                                                                                                                              |                         |         |  |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|---------|--|
| Clause  | Requirement – Test                                                                                                                                                                                                                                                                                                            | Result – Remark         | Verdict |  |
|         | demonstrate how the Micro-generator Active<br>Power when acting as a load (ie replenishing<br>its energy store) responds to changes in<br>system frequency.                                                                                                                                                                   |                         |         |  |
|         | In general four tests are proposed, one set of two at rated import capacity, and one set of two at 40% of rated import capacity.                                                                                                                                                                                              |                         |         |  |
|         | In both cases the test is to reduce frequency from 50 Hz at 2 Hzs-1.                                                                                                                                                                                                                                                          |                         |         |  |
|         | In the first case the lower frequency reached will be 49.0 Hz and the second case the lower frequency will be 48,8 Hz.                                                                                                                                                                                                        |                         |         |  |
|         | In all cases the response shall meet the requirements of 9.4.3.                                                                                                                                                                                                                                                               |                         |         |  |
| A 1.2.9 | Power response to over-frequency                                                                                                                                                                                                                                                                                              | Considered.             | Р       |  |
|         | Tests shall be undertaken using the test set<br>up in Figure A1.2 to verify the Active Power<br>reduction to over-frequency using a specific<br>standard frequency threshold of 50,4 Hz and<br>a Droop of 10%. The test should be carried<br>out above 80% Registered Capacity and<br>repeated at 40-60% Registered Capacity. | Test results see below. |         |  |
|         | The Micro-generator shall be at the following frequencies (refer to Figure A1.3):                                                                                                                                                                                                                                             |                         |         |  |
|         | • a) 50,00 Hz ± 0,01 Hz;                                                                                                                                                                                                                                                                                                      |                         |         |  |
|         | • b) 50,40+0.05 Hz ± 0,05 Hz;                                                                                                                                                                                                                                                                                                 |                         |         |  |
|         | • c) 50,70 Hz ± 0,10 Hz;                                                                                                                                                                                                                                                                                                      |                         |         |  |
|         | • d) 51,15 Hz ± 0,05 Hz;                                                                                                                                                                                                                                                                                                      |                         |         |  |
|         | • e) 50,70 Hz ± 0,10 Hz;                                                                                                                                                                                                                                                                                                      |                         |         |  |
|         | • f) 50,40+0.05 Hz ± 0,05 Hz;                                                                                                                                                                                                                                                                                                 |                         |         |  |
|         | • g) 50,00 Hz ± 0,01 Hz.                                                                                                                                                                                                                                                                                                      |                         |         |  |
|         | The frequency at each step should be<br>maintained for at least one minute and the<br>Active Power reduction in the form of a<br>gradient determined and assessed for<br>compliance with paragraph 9.4.                                                                                                                       |                         |         |  |



|          | Engineering recommend                                                                                                                                 | dation G98/1            |         |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|---------|
| Clause   | Requirement – Test                                                                                                                                    | Result – Remark         | Verdict |
|          | Frequency<br>(Hc)<br>51.5<br>51.0 ± 0.05 Hz<br>50.5<br>50.40 ± 0.05 Hz<br>(d)<br>(d)<br>(d)<br>(d)<br>(d)<br>(d)<br>(d)<br>(d)                        |                         |         |
|          | Figure A1.3 Testing the Active Power feed-in of the Micro-generator at over frequency.                                                                |                         |         |
|          | The Droop should be determined from the measurements between 50,4 Hz and 51,15 Hz.                                                                    |                         |         |
|          | The allowed tolerance for the frequency measurement shall be $\pm 0,05$ Hz. The allowed                                                               |                         |         |
|          | tolerance for Active Power output measurement shall be $\pm 10\%$ of the required change in                                                           |                         |         |
|          | Active Power. The resulting overall tolerance range for a nominal 10% Droop is +2,8% and $-1,5\%$ , ie a Droop less than 12,8% and greater than 8,5%. |                         |         |
| A 1.2.10 | Operating Range                                                                                                                                       | Considered.             | Р       |
|          | Six tests shall be conducted with the Micro-<br>generator operating at Registered Capacity<br>connected to a grid simulator set as follows:           | Test results see below. |         |
|          | • Test 1, Voltage = 85% of nominal,<br>frequency = 47 Hz, Power factor = 1, Period<br>of test 20 s.                                                   |                         |         |
|          | • Test 2, Voltage = 85% of nominal,<br>frequency = 47,5 Hz, Power factor = 1,<br>Period of test 90 minutes.                                           |                         |         |
|          | • Test 3, Voltage = 110% of nominal,<br>frequency = 51,5 Hz, Power factor = 1,<br>Period of test 90 minutes.                                          |                         |         |
|          | <ul> <li>Test 4, Voltage = 110% of nominal,<br/>frequency = 52,0 Hz, Power factor = 1,<br/>Period of test 15 minutes.</li> </ul>                      |                         |         |
|          | • Test 5, Voltage = 100% of nominal,<br>frequency = 50,0 Hz, Power factor = 1,<br>Period of test 90 minutes.                                          |                         |         |
|          | Test 6, Confirm that the Micro-Generating Plant is capable of staying connected to the                                                                |                         |         |



| Engineering recommendation G98/1 |                                                                                                                                                                                                                                                                                                                                                                                                        |                         |         |
|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|---------|
| Clause                           | Requirement – Test                                                                                                                                                                                                                                                                                                                                                                                     | Result – Remark         | Verdict |
|                                  | Distribution Network and operate at rates of<br>change of frequency up to 1 Hzs-1 as<br>measured over a period of 500 ms.                                                                                                                                                                                                                                                                              |                         |         |
|                                  | The Interface Protection shall be disabled during the tests.                                                                                                                                                                                                                                                                                                                                           |                         |         |
|                                  | Automatic adjustment to reduce power in the case of over frequency shall be disabled for Tests 3 and 4.                                                                                                                                                                                                                                                                                                |                         |         |
|                                  | Active Power shall be recorded every<br>second. The tests will verify that the Micro-<br>generator can operate within the required<br>ranges for the specified period of time.                                                                                                                                                                                                                         |                         |         |
|                                  | In case of a PV Micro-generator the PV primary source may be replaced by a DC source.                                                                                                                                                                                                                                                                                                                  |                         |         |
|                                  | In case of a full converter Micro-generator<br>(eg wind) the primary source and the prime<br>mover Inverter/rectifier may be replaced by a<br>DC source.                                                                                                                                                                                                                                               |                         |         |
|                                  | In case of a DFIG Micro-generator the mechanical drive system may be replaced by a test bench motor.                                                                                                                                                                                                                                                                                                   |                         |         |
| A 1.3                            | POWER QUALITY                                                                                                                                                                                                                                                                                                                                                                                          |                         | Р       |
| A 1.3.1                          | Harmonics                                                                                                                                                                                                                                                                                                                                                                                              | Considered.             | Р       |
|                                  | The tests should be carried out as specified<br>in BS EN 61000-3-2 and can be undertaken<br>with a fixed source of energy at two power<br>levels firstly between 45 and 55% and at<br>100% of Registered Capacity.                                                                                                                                                                                     | Test results see below. |         |
|                                  | The test must be carried out with a minimum<br>of 2 kW of rated Micro-generators. Where an<br>individual Micro-generator is smaller than 2<br>kW it should be tested as a group. However,<br>where a Micro-generator is designed to be<br>installed singly in an installation then this can<br>be tested alone, for example a domestic CHP<br>unit. The maximum group size for the test is<br>3,68 kW. |                         |         |
|                                  | The results for all Micro-generators should be<br>normalised to a rating of 3,68 kW. The Micro-<br>generator or group shall meet the harmonic<br>emissions of Table 1 in BS EN 61000-3-2<br>with a scaling factor applied as follows for<br>each harmonic current:                                                                                                                                     |                         |         |
|                                  | BS EN 61000-3-2 Table 1 current limit ×<br>rating of Micro-generator being tested (kW)<br>per phase / 3,68                                                                                                                                                                                                                                                                                             |                         |         |
|                                  | Deveen Frieden                                                                                                                                                                                                                                                                                                                                                                                         | Considered.             | Р       |
| A 1.3.2                          | Power Factor                                                                                                                                                                                                                                                                                                                                                                                           | Considered.             | F       |



|         | Engineering recommend                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | dation G98/1            |         |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|---------|
| Clause  | Requirement – Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Result – Remark         | Verdict |
|         | supplies full load to the DNO's Distribution<br>Network via the power factor (pf) meter and<br>the variac as shown below in Figure A1.4.<br>The Inverter pf should be within the limits<br>given in paragraph 9.6 for three test voltages<br>230 V – 6%, 230 V and 230 V +10%. The<br>voltage shall be maintained within $\pm 1,5\%$ of<br>the stated level during the test.<br>NOTE 1. For reasons of clarity the points of isolation are not shown<br>NOTE 2: For reasons of clarity the points of isolation are not shown<br>NOTE 2: For reasons of clarity the points of isolation are not shown<br>NOTE 2: For reasons of clarity the points of isolation are not shown<br>NOTE 2: For reasons of clarity the points of isolation are not shown<br>NOTE 2: For reasons of clarity the points of isolation are not shown<br>NOTE 2: For reasons of clarity the points of isolation are not shown<br>NOTE 2: For reasons of clarity the points of isolation are not shown<br>NOTE 2: For reasons of clarity the points of isolation are not shown<br>NOTE 2: For reasons of clarity the points of isolation are not shown<br>NOTE 2: For reasons of clarity the points of isolation are not shown<br>NOTE 2: For reasons of clarity the points of isolation are not shown<br>NOTE 2: For reasons of clarity the points of isolation are not shown<br>NOTE 2: For reasons of clarity the points of isolation are not shown<br>NOTE 2: For reasons of clarity the points of isolation are not shown<br>NOTE 2: For reasons of clarity the points of isolation are not shown<br>NOTE 2: For reasons of clarity the points of isolation are not shown<br>Not 2: For reasons of clarity the points of isolation are not shown<br>Not 2: For reasons of clarity the points of isolation are not shown<br>Not 2: For reasons of clarity the points of isolation are not shown<br>Not 2: For reasons of clarity the points of isolation are not shown<br>Not 2: For reasons of clarity the points of isolation are not shown<br>Not 2: For reasons of clarity the points of isolation are not shown<br>Not 2: For reasons of clarity the points of isolation are not shown<br>Not 2: For reasons of clarity the points of isolation |                         |         |
| A 1.3.3 | Voltage Flicker                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Considered.             | Р       |
|         | The test must be carried out with a minimum<br>of 2 kW of rated Micro-generators. Where an<br>individual Micro-generator is smaller than 2<br>kW it should be tested as a group. However,<br>where a Micro-generator is designed to be<br>installed singly in an installation then this can<br>be tested alone, for example a domestic CHP<br>unit. The maximum group size for the test is<br>3,68 kW.<br>The Micro-generator or group shall meet the<br>required dmax, dc, d(t), Pst, Plt requirements<br>of BS EN 61000-3-3 with a scaling factor<br>applied as follows for each voltage change<br>component.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Test results see below. |         |
|         | dmax, dc, d(t), Pst, Plt × rating of Micro-<br>generator being tested (kW) per phase / 3,68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         |         |
|         | The results for groups of Micro-generators<br>should be normalised to a rating of 3,68 kW<br>and to the standard source impedance.<br>Single Micro-generators need to be<br>normalised to the standard source<br>impedance, these normalised results need to<br>conform to the limits set out in the Type Test<br>Verification Report, Appendix 3 Form C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         |         |
|         | For voltage change and flicker<br>measurements the following simplified<br>formula is to be used to convert the<br>measured values to the normalised values<br>where the power factor of the Micro-<br>generator output is 0,98 or above. Where it is<br>less than 0,98 then compliance with the full<br>requirements of BS EN 61000-3-3 is<br>required.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                         |         |
|         | Normalised value = Measured value ×<br>reference source resistance/measured<br>source                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                         |         |



|        | Engineering recommendation G98/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 |         |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------|
| Clause | Requirement – Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Result – Remark | Verdict |
|        | resistance at test point.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |         |
|        | And for units which are tested as a group.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |         |
|        | Normalised value = Measured value ×<br>reference source resistance/measured<br>source resistance at test point × 3,68/rating<br>per phase.                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |         |
|        | Single phase units reference source resistance is 0,4 $\Omega$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 |         |
|        | Two phase units in a three phase system reference source resistance is 0,4 $\Omega$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 |         |
|        | Two phase units in a split phase system reference source resistance is 0,24 $\Omega$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |         |
|        | Three phase units reference source resistance is $0,24 \ \Omega$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |         |
|        | The stopping test should be a trip from full load output.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |         |
|        | The dates and location of the tests need to<br>be noted in the Type Test Verification Report,<br>Appendix 3 Form C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 |         |
|        | Note: For wind turbines, flicker testing should<br>be carried out during the performance tests<br>specified in IEC 61400-12-1. Flicker data<br>should be recorded from wind speeds of 1<br>ms-1 below cut-in to 1,5 times 85% of the<br>rated power. The wind speed range should<br>be divided into contiguous bins of 1 m/s<br>centred on multiples of 1 ms-1. The dataset<br>shall be considered complete when each bin<br>includes a minimum of 10 mins of sampled<br>data. The highest value of each parameter<br>measured across the entire range of tests<br>shall be recorded. |                 |         |
|        | Note: As an alternative to type testing the<br>Manufacturer of a Micro-generator<br>incorporating an Inverter may give a<br>guarantee that rates of change of output do<br>not exceed the following ramp rate limits.<br>Output needs to ramp up at a constant rate.                                                                                                                                                                                                                                                                                                                  |                 |         |
|        | This exception to site testing does not apply<br>to devices where the output changes in steps<br>of over 30 ms rather than as a ramp function,<br>a site test is required for these units.                                                                                                                                                                                                                                                                                                                                                                                            |                 |         |
|        | <ul> <li>Single phase units and two phase units in<br/>a three phase system, maximum ramp up<br/>rate 333 Ws<sup>-1</sup>;</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 |         |
|        | <ul> <li>Two phase units in a split phase system<br/>and three phase units, maximum ramp up<br/>rate 860 Ws<sup>-1</sup>.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 |         |



|         | Engineering recommen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | dation G98/1                           |         |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|---------|
| Clause  | Requirement – Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Result – Remark                        | Verdict |
|         | It should be noted that units conforming to<br>this declaration are likely to be less efficient<br>at capturing energy during times when the<br>energy source is changing.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                        |         |
|         | For technologies other than wind turbines,<br>testing should ensure that the controls or<br>automatic programs used produce the most<br>unfavourable sequence of voltage changes.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                        |         |
|         | Hydro Micro-generators where the output is<br>controlled by varying the load on the<br>generator using the Inverter and which<br>therefore produce variable output need to<br>conform to the maximum voltage change<br>requirements of BS EN 61000-3-2 and also<br>need to be tested for Pst and Plt over a<br>period where the range of flows varies over<br>the design range of the turbine with a period<br>of at least 2 hours at each step with there<br>being 10 steps from min flow to maximum<br>flow. Pst and Plt values to recorded and<br>normalised as per the method laid down in<br>the Type Test Verification Report, Appendix 3<br>Form C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                        |         |
| A 1.3.4 | <ul> <li>DC Injection for Inverters</li> <li>Where a Micro-generator is designed to be installed singly in an installation, for example a domestic CHP unit, then this DC injection limit can be a maximum value of 20 mA for sub 2 kW Micro-generator and can be tested alone. Where Micro-generators are designed such that multiple units may be installed in an installation for example roof mounted wind turbines and PV with micro Inverters on each panel, then they should be tested as a group of at least 2 kW and with a maximum group size of 4 kW.</li> <li>The level of DC injection from the Inverter-connected Micro-generator into the DNO's Distribution Network shall not exceed the levels specified in Section 11 when measured during operation at three levels, 10% ( 55% and 100% of Designation Connected Connected Connected Connected Connected Network shall not exceed the levels specified in Section 11 when measured during operation at three levels, 10% ( 55% and 100% of Designation Connected Connecte</li></ul> | Considered.<br>Test results see below. | Ρ       |
|         | <ul> <li>10%, 55% and 100% of Registered Capacity with a tolerance of plus or minus 5%.</li> <li>The DC component can be measured by one of the following two methods:</li> <li>the average of the current samples (preferred);</li> <li>root mean square of frequencies</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                        |         |
|         | components below 1 Hz.<br>The DC component level shall be measured                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                        |         |



|         | Engineering recommen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | dation G98/1                                                                                                                                                                                  |         |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| Clause  | Requirement – Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Result – Remark                                                                                                                                                                               | Verdict |
|         | with an observation period large enough to ensure repeatability, and of at least 60 s.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                               |         |
|         | As an example, at 230 V a 2 kW single phase<br>Inverter has a current output of 8,7 A so DC<br>limit is 21,75 mA; a 10 kW three phase<br>Inverter has a current output of 14,5 A per<br>phase which is equivalent to a total of 43,5 A<br>at 230 V so DC limit is 108,75 mA.                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                               |         |
| A 1.3.5 | Short Circuit Current Contribution for<br>Inverters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Considered.<br>Test results see below.                                                                                                                                                        | Р       |
|         | Inverter connected Micro-generators<br>generally have small short circuit fault<br>contributions, however, DNOs need to<br>understand the contribution that they make to<br>system fault levels in order to determine that<br>they can continue to safely operate without<br>exceeding design fault levels for switchgear<br>and other circuit components.                                                                                                                                                                                                                                    |                                                                                                                                                                                               |         |
|         | The following type tests shall be carried out<br>and the results noted in the Type Test<br>Verification Report, Appendix 3 Form C.                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                               |         |
|         | Figure A3. Test circuit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                               |         |
|         | 230v<br>AC<br>50Hz<br>C<br>V<br>D<br>inverter<br>under test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                               |         |
| A 1.3.6 | Self-Monitoring - Solid State<br>Disconnection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A disconnection device with mechanical separation in the                                                                                                                                      | Р       |
|         | Some Micro-generators include solid state<br>switching devices to disconnect from the<br>DNO's Distribution Network. In this case<br>10.1.9 requires the control equipment to<br>monitor the output stage of the Micro-<br>generator to ensure that in the event of a<br>protection initiated trip the output voltage is<br>either disconnected completely or reduced to<br>a value below 50 V AC. This shall be verified<br>either by self-certification by the<br>Manufacturer, or additional material shall be<br>presented to the tester sufficient to allow an<br>assessment to be made. | use of two relays in series in<br>(each) line and neutral are<br>provided in the unit.<br>The internal disconnection<br>device is comply with 4.1<br>function safety of the VDE 0126-<br>1-1. |         |



|          | Engineering recommen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | dation G98/1                                |         |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|---------|
| Clause   | Requirement – Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Result – Remark                             | Verdict |
| Annex A2 | Requirements for Type Testing of Synchror                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nous Micro-generators                       |         |
| A 2.1    | <b>General</b><br>This Annex describes a methodology for<br>obtaining type certification or type verification<br>for the interface equipment between a<br>directly coupled Micro-generator and the<br>DNO's Distribution Network. Interface<br>functions can be provided either as an<br>integrated part of the Controller or by<br>incorporating a protection relay but for a Fully<br>Type Tested Micro-generator the completed<br>Micro-generator's Interface Protection shall<br>not rely on interconnection using cables<br>which could be terminated incorrectly on site<br>ie the interconnections shall be made by non-<br>reversible plug and socket which the<br>Manufacturer has made and tested prior to | The unit is no synchronous micro-generator. | N/A     |
|          | <ul> <li>delivery to site.</li> <li>The Interface Protection of synchronous<br/>Micro-generators shall satisfy the<br/>requirements of all of the following standards.<br/>Where these standards have more than one<br/>part, the requirements of all such parts shall<br/>be satisfied, so far as they are applicable.</li> <li>BS EN 61000 (Electromagnetic<br/>Standards)</li> <li>BS EN 60255 (Electrical Relays)</li> <li>BS EN 61810 (Electrical Elementary<br/>Relays)</li> </ul>                                                                                                                                                                                                                             |                                             |         |
|          | <ul> <li>BS EN 60947 (Low Voltage Switchgear<br/>and Control gear)</li> <li>BS EN 61869 (Instrument Transformers:<br/>Additional requirements for current<br/>transformers)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                             |         |
|          | transformers)<br>Currently there are no harmonised functional<br>standards that apply to the Micro-generator<br>Interface Protection, therefore in order to<br>achieve Fully Type Tested status the<br>Controller and any separate Interface<br>Protection unit will require their functionality<br>to be Fully Type Tested as described in this<br>Annex, and recorded in format similar to that<br>shown in the Type Test Verification Report,<br>Appendix 3 Form C.                                                                                                                                                                                                                                               |                                             |         |
|          | Where the Interface Protection is physically<br>integrated within the overall Micro-generator<br>control system, the functionality of the<br>Interface Protection unit should not be<br>compromised by any failure of other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                             |         |



| Engineering recommendation G98/1 |                                                                                                                                                                                                                                                                            |                                             |         |
|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|---------|
| Clause                           | Requirement – Test                                                                                                                                                                                                                                                         | Result – Remark                             | Verdict |
|                                  | elements of the control system (fail safe).                                                                                                                                                                                                                                |                                             |         |
|                                  | This Annex applies to Micro-generators:                                                                                                                                                                                                                                    |                                             |         |
|                                  | • with or without energy storage systems connected on the alternator side of the Controller; and                                                                                                                                                                           |                                             |         |
|                                  | • with or without load management devices.                                                                                                                                                                                                                                 |                                             |         |
|                                  | Wherever possible the type testing of a<br>Micro-generator utilising a particular type of<br>prime mover should be proved under normal<br>conditions of operation for that prime mover<br>(unless otherwise noted).                                                        |                                             |         |
|                                  | This Annex can also be used for<br>asynchronous Micro-generators that are not<br>connected to the Distribution Network via an<br>Inverter as appropriate.                                                                                                                  |                                             |         |
|                                  | This Annex also applies to any synchronous<br>Micro-generators that are powered by stored<br>energy (eg compressed air), but the<br>requirement to demonstrate the LFSM-O will<br>not be required.                                                                         |                                             |         |
| A 2.2                            | Type Verification Functional Testing of the Interface Protection                                                                                                                                                                                                           | The unit is no synchronous micro-generator. | N/A     |
|                                  | Type testing is the responsibility of the Manufacturer.                                                                                                                                                                                                                    |                                             |         |
|                                  | The type testing can be done by the<br>Manufacturer of an individual component, by<br>an external test house or by the supplier of<br>the complete system, or any combination of<br>them as appropriate.                                                                   |                                             |         |
|                                  | The type testing will verify that the operation of the Interface Protection shall result:                                                                                                                                                                                  |                                             |         |
|                                  | a) in the safe disconnection of the Micro-<br>generator from the DNO's Distribution<br>Network in the event that the protection<br>settings specified in Table 2 are exceeded;<br>and                                                                                      |                                             |         |
|                                  | b) in the Micro-generator remaining<br>connected to the DNO's Distribution Network<br>while Distribution Network conditions are: 1)<br>within the envelope specified by the settings<br>plus and minus the tolerances specified for<br>equipment operation in Table 2; and |                                             |         |
|                                  | 2) within the time delay settings specified in Table 2.                                                                                                                                                                                                                    |                                             |         |
| A 2.2.1                          | Disconnection times                                                                                                                                                                                                                                                        | The unit is no synchronous                  | N/A     |
|                                  | The minimum trip time delay settings, for<br>over / under voltage, over / under frequency<br>and loss of mains tests below, are presented                                                                                                                                  | micro-generator.                            |         |



|         | Engineering recommendation G98/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                             |         |  |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|---------|--|
| Clause  | Requirement – Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Result – Remark                             | Verdict |  |
|         | in Table 2.<br>For over / under voltage, over / under<br>frequency and loss of mains tests,<br>reconnection shall be checked as detailed<br>below.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                             |         |  |
|         | In some systems it may be safer and more<br>convenient to test the trip delay time and the<br>disconnection time separately. This will allow<br>the trip delay time to be measured in a test<br>environment (in a similar way as for a<br>protection relay). The disconnection time can<br>be measured in the Micro-generator normal<br>operation, allowing accurate measurement<br>with correct inertia and prime mover<br>characteristics. This is permitted providing<br>the total disconnection time does not exceed<br>the value specified in Table 2. When<br>measuring the disconnection time where the<br>Interface Protection is included in the<br>Controller, 5 s disconnections should be<br>initiated, and the average time recorded.                                                                                                                                                                                                                            |                                             |         |  |
| A 2.2.2 | <ul> <li>Over / Under Voltage</li> <li>The Interface Protection shall be tested by operating the Controller in parallel with a variable AC test supply, as an example see Figure A2.1. Correct protection and ride-through operation shall be confirmed. The set points for over and under voltage at which the Interface Protection disconnects from the supply will be established by varying the AC supply voltage. The disconnect sequence should be initiated when the network conditions of Table 2 are met, otherwise normal operation should continue.</li> <li>To establish the certified trip voltage, the test voltage should be applied in steps of ± 0,5% of setting for a duration that is longer than the trip time delay, for example 1 s in the case of a delay setting of 0,5 s. It will be necessary to carry out five tests for each trip setting. The test voltage at which this trip occurs is to be recorded as the certified trip voltage.</li> </ul> | The unit is no synchronous micro-generator. | N/A     |  |
|         | To establish the certified trip time, the test<br>voltage should be applied starting from $\pm$<br>1,8% below the certified trip voltage in a step<br>of at least $\pm$ 0,5% of setting for a duration that<br>is longer than the trip time delay, for example<br>1 s in the case of a delay setting of 0,5 s.<br>Where the Interface Protection functionality is<br>implemented in the Controller, it will be<br>necessary to carry out five tests for each trip<br>setting. The longest trip time is to be                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                             |         |  |



|        | Engineering recommend                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | dation G98/1    |         |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------|
| Clause | Requirement – Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Result – Remark | Verdict |
| Clause | Requirement – Test         recorded as the certified trip time.         For example, to test overvoltage setting stage 1 which is required to be set at nominally 262,2 V the circuit can be set up as shown below and the voltage adjusted to 254,2 V. In integrated designs where there is no separate way of establishing that the Micro-generator is disconnected, the Micro-generator should be powered up to export a measurable amount of energy so that it can be confirmed that the Micro-generator has ceased to output energy. The variable voltage supply is then increased in steps of no more than 0,5% of nominal voltage (1,15 V) maintaining the voltage for at least 1,5 s (trip time plus 0,5 s) at each voltage level. At each voltage level confirmation that the Micro-generator has not tripped after the time delay is required to be taken. At the voltage level at which a trip occurs then this should be recorded as the provisional trip voltage. Additional tests just below and if necessary just above the provisional trip voltage will allow the actual trip voltage to be established on a repeatable basis. This value should be recorded. For the sake of this example the actual trip level is assumed to have been established as being 261 V. The variable voltage supply should be set to 257 V, the Micro-generator set to produce a measurable output (if necessary) and then the voltage raised to 265 V in a single step. The time from the step change to the disconnection of the Micro-generator, the output of the Micro-generator falling to zero, should be recorded as the trip time.         To confirm that the protection does not trip before the required time, the test voltage should be applied at each setting ± 4V and for the relevant times shown in the Type Test Verification Report, Appendix 3 Form C.         Test results should be recorded on the Test Shoet shown in the Type Test Verification Report, Appen | Result – Remark | Verdict |

Bureau Veritas Shenzhen Co., Ltd. Dongguan Branch



|         | Engineering recommen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | dation G98/1                                |         |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|---------|
| Clause  | Requirement – Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Result – Remark                             | Verdict |
| A 2.2.3 | Over / Under Frequency<br>The Interface Protection shall be tested by<br>operating the Controller in parallel with a low<br>impedance, variable frequency test supply<br>system, as an example see Figure A2.2.<br>Correct protection and ride-through operation<br>should be confirmed during the test. The set<br>points for over and under frequency at which<br>the Interface Protection disconnects from the<br>supply will be established by varying the test<br>supply frequency.                                                                                                                                               | The unit is no synchronous micro-generator. | N/A     |
|         | To establish a trip frequency, the test<br>frequency should be applied in a slow ramp<br>rate of less than 0,1 Hzs-1, or if this is not<br>possible in steps of 0,05 Hz for a duration<br>that is longer than the trip time delay, for<br>example 1 s in the case of a delay setting of<br>0,5 s. The test frequency at which this trip<br>occurred is to be recorded. Additional tests<br>just above and below the trip frequency<br>should be undertaken to show that the test is<br>repeatable and the figure at which a<br>repeatable trip occurs should be recorded on<br>the Type Test Verification Report Appendix 3<br>Form C. |                                             |         |
|         | To establish the trip time, the test frequency<br>should be applied starting from 0,3 Hz below<br>or above the recorded trip frequency and<br>should be changed to 0,3 Hz above or below<br>the recorded trip frequency in a single step.<br>The time taken from the step change to the<br>Microgenerator tripping is to be recorded on<br>the Type Test Verification Report Appendix 3<br>Form C.                                                                                                                                                                                                                                     |                                             |         |
|         | It should be noted that with some loss of<br>mains detection techniques this test may<br>result in a faster Trip due to operation of the<br>loss of mains protection and if possible the<br>loss of mains protection should be turned off<br>in order to carry out this test. Otherwise a<br>much smaller step change should be used to<br>initiate the trip and establish a trip time, which<br>may require the test to be repeated several<br>times to establish that the time delay is<br>correct.                                                                                                                                  |                                             |         |
|         | To confirm that the protection does not trip<br>before the required time the test frequency<br>should be applied at each setting $\pm 0.2$ Hz<br>and for the relevant times shown in the table<br>in the Type Test Verification Report,<br>Appendix 3 Form C.                                                                                                                                                                                                                                                                                                                                                                          |                                             |         |



| Engineering recommendation G98/1 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                             |         |  |  |
|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|---------|--|--|
| Clause                           | Requirement – Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Result – Remark                             | Verdict |  |  |
|                                  | Figure A2.2. Test set up – Over / Under Frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                             |         |  |  |
| A 2.2.4                          | Loss of Mains Protection<br>The test described in this Annex should be<br>completed at 10%, 55%, and 100% of the<br>Registered Capacity. In both cases a subset<br>of results should be recorded as indicated in<br>the Protection – Loss of Mains test section of<br>the Type Test Verification Report, Appendix 3<br>Form C. Note that if the suggested loading<br>points are below the Micro-generator's<br>minimum stable operating level the test<br>should be completed at 100%, and at least<br>one loading level below 100%, of the<br>Registered Capacity. It is recommended that<br>a power level is chosen that is 5% of the<br>difference between the Registered Capacity<br>and the minimum stable operating level<br>above the minimum stable operating level<br>+ (Registered Capacity – minimum stable<br>operating level) x 5%<br>The resonant test circuit specified in this test<br>has been designed to model the interaction<br>of the directly coupled Micro-generator under<br>test with the local load including multiple<br>directly coupled Micro-generators output<br>shall be connected to a network combining a<br>resonant circuit with a Q factor of >0,5 and a<br>variable load. The value of the load is to<br>match the directly coupled Micro-generator<br>output. To facilitate the test for LoM there<br>shall be a switch placed between the test<br>load/directly coupled Micro-generator<br>combination and the DNO's Distribution<br>Network, as shown in Figure A2.3. | The unit is no synchronous micro-generator. | N/A     |  |  |
|                                  | Figure A2.3 test set up – Loss of Mains<br>The directly coupled Micro-generator is to be<br>tested at three levels of the directly coupled<br>Micro-generator's output power: 10%, 55%<br>and 100%. For each test the load match is to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                             |         |  |  |



|         | Engineering recommendation G98/1                                                                                                                                                                                                                                                                                                                                                                                                                          |                                             |         |  |  |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|---------|--|--|
| Clause  | Requirement – Test                                                                                                                                                                                                                                                                                                                                                                                                                                        | Result – Remark                             | Verdict |  |  |
|         | be within $\pm$ 5%. Each test is to be repeated five times.                                                                                                                                                                                                                                                                                                                                                                                               |                                             |         |  |  |
|         | Load match conditions are defined as being<br>when the current from the directly coupled<br>Microgenerator meets the requirements of<br>the test load ie there is no export or import of<br>supply frequency current to or from the<br>DNO's Distribution Network.                                                                                                                                                                                        |                                             |         |  |  |
|         | The tests will record the directly coupled<br>Micro-generator's output voltage and<br>frequency from at least 2 cycles before the<br>switch is opened until the protection system<br>operates and disconnects itself from the<br>DNO's Distribution Network, or for five<br>seconds whichever is the lower duration.                                                                                                                                      |                                             |         |  |  |
|         | The time from the switch opening until the protection disconnection occurs is to be measured and must comply with the requirements in Table 2.                                                                                                                                                                                                                                                                                                            |                                             |         |  |  |
| A 2.2.5 | Reconnection                                                                                                                                                                                                                                                                                                                                                                                                                                              | The unit is no synchronous micro-generator. | N/A     |  |  |
|         | Further tests will confirm that once the AC<br>supply voltage and frequency have returned<br>to be within the stage 1 settings specified in<br>Table 2 following an automatic protection trip<br>operation there is a minimum time delay of<br>20 s before the Micro-generator output is<br>restored (ie before the Micro-generator<br>automatically reconnects to the Distribution<br>Network).                                                          |                                             |         |  |  |
|         | Four tests are required to be carried out with<br>all protection functions enabled including loss<br>of mains. For each stability test the Micro-<br>generator should not trip during the test.                                                                                                                                                                                                                                                           |                                             |         |  |  |
|         | For the step change test the Micro-generator<br>should be operated with a measurable output<br>at the start frequency and then a vector shift<br>should be applied by extending or reducing<br>the time of a single cycle with subsequent<br>cycles returning to the start frequency. The<br>start frequency should then be maintained for<br>a period of at least 10 s to complete the test.<br>The Micro-generator should not trip during<br>this test. |                                             |         |  |  |
|         | For frequency drift tests the Micro-generator<br>should be operated with a measurable output<br>at the start frequency and then the frequency<br>changed in a ramp function at 0.95 Hzs-1 to<br>the end frequency. On reaching the end<br>frequency it should be maintained for a<br>period of at least 10 s. The Micro-generator<br>should not trip during this test.                                                                                    |                                             |         |  |  |



|         | Engineering recommen                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ndation G98/1                               |         |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|---------|
| Clause  | Requirement – Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Result – Remark                             | Verdict |
| A 2.2.6 | Frequency Drift and Step Change Stability test                                                                                                                                                                                                                                                                                                                                                                                                                                    | The unit is no synchronous micro-generator. | N/A     |
|         | The tests will be carried out using the same<br>circuit as specified in A.2.2.3 above and<br>following confirmation that the Micro-<br>generator has passed the under and over<br>frequency trip tests and the under and over<br>frequency stability tests.                                                                                                                                                                                                                       |                                             |         |
|         | Four tests are required to be carried out with<br>all protection functions enabled including loss<br>of mains. For each stability test the Micro-<br>generator should not trip during the test.                                                                                                                                                                                                                                                                                   |                                             |         |
|         | For the step change test the Micro-generator<br>should be operated with a measurable output<br>at the start frequency and then a vector shift<br>should be applied by extending or reducing<br>the time of a single cycle with subsequent<br>cycles returning to the start frequency. The<br>start frequency should then be maintained for<br>a period of at least 10 s to complete the test.<br>The Micro-generator should not trip during<br>this test.                         |                                             |         |
|         | For frequency drift tests the Micro-generator<br>should be operated with a measurable output<br>at the start frequency and then the frequency<br>changed in a ramp function at 0,95 Hzs-1 to<br>the end frequency. On reaching the end<br>frequency it should be maintained for a<br>period of at least 10 s. The Micro-generator<br>should not trip during this test.                                                                                                            |                                             |         |
| A 2.2.7 | Active power feed-in at under-frequency                                                                                                                                                                                                                                                                                                                                                                                                                                           | The unit is no synchronous                  | N/A     |
|         | The tests detailed in A.1.2.7 shall be<br>undertaken to verify the Active Power feed-in<br>at underfrequency                                                                                                                                                                                                                                                                                                                                                                      | micro-generator.                            |         |
| A 2.2.8 | Micro-generators which include Electricity Storage                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             | N/A     |
|         | This paragraph provides a method for<br>demonstrating compliance with the optional<br>performance characteristic as discussed in<br>the foreword. The Manufacturer shall<br>demonstrate how the Micro-generator Active<br>Power when acting as a load (ie replenishing<br>its energy store) responds to changes in<br>system frequency. In general four tests are<br>proposed, one set of two at rated import<br>capacity, and one set of two at 40% of rated<br>import capacity. |                                             |         |
|         | In both cases the test is to reduce frequency<br>from 50 Hz at 2 Hzs-1. In the first case the<br>lower frequency reached will be 49,0 Hz and<br>the second case the lower frequency will be                                                                                                                                                                                                                                                                                       |                                             |         |



| Engineering recommendation G98/1 |                                                                                                                                                                                                                                                                                                                                                                                                        |                                             |         |  |
|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|---------|--|
| Clause                           | Requirement – Test                                                                                                                                                                                                                                                                                                                                                                                     | Result – Remark                             | Verdict |  |
|                                  | 48,8 Hz.                                                                                                                                                                                                                                                                                                                                                                                               |                                             |         |  |
|                                  | In all cases the response shall meet the requirements of 9.4.3.                                                                                                                                                                                                                                                                                                                                        |                                             |         |  |
| A 2.2.7                          | Power response to over-frequency                                                                                                                                                                                                                                                                                                                                                                       | The unit is no synchronous                  | N/A     |  |
|                                  | The tests detailed in A.1.2.9 shall be<br>undertaken to verify the power reduction to<br>overfrequency using a specific standard<br>frequency threshold of 50,4 Hz and a Droop<br>of 10%.                                                                                                                                                                                                              | micro-generator.                            |         |  |
| A 2.3                            | POWER QUALITY                                                                                                                                                                                                                                                                                                                                                                                          | The unit is no synchronous micro-generator. | N/A     |  |
| A 2.3.1                          | Harmonics                                                                                                                                                                                                                                                                                                                                                                                              | The unit is no synchronous                  | N/A     |  |
|                                  | The tests should be carried out as specified<br>in BS EN 61000-3-2 and can be undertaken<br>with a fixed source of energy at two power<br>levels firstly between 45 and 55% and at<br>100% of Registered Capacity.                                                                                                                                                                                     | micro-generator.                            |         |  |
|                                  | Note that if the suggested power levels are<br>below the Microgenerator's minimum stable<br>operating level the test should be carried out<br>at 100%, and at Least one stable loading<br>level below 100%, of Registered Capacity.                                                                                                                                                                    |                                             |         |  |
|                                  | It is recommended that a power level is<br>chosen that is 5% of the difference between<br>the Registered Capacity and the minimum<br>stable operating level above the minimum<br>stable operating level:                                                                                                                                                                                               |                                             |         |  |
|                                  | Power level = Minimum stable operating level<br>+ (Registered Capacity – minimum stable<br>operating level) x 5%                                                                                                                                                                                                                                                                                       |                                             |         |  |
|                                  | The test must be carried out with a minimum<br>of 2 kW of rated Micro-generators. Where an<br>individual Micro-generator is smaller than 2<br>kW it should be tested as a group. However,<br>where a Micro-generator is designed to be<br>installed singly in an installation then this can<br>be tested alone, for example a domestic CHP<br>unit. The maximum group size for the test is<br>3,68 kW. |                                             |         |  |
| A 2.3.2                          | Power Factor                                                                                                                                                                                                                                                                                                                                                                                           | The unit is no synchronous                  | N/A     |  |
|                                  | The test set up shall be such that the directly coupled Micro-generator supplies full load to the DNO's Distribution Network via the power factor (pf) meter and the variac as shown below in Figure A2.4. The directly coupled Micro-generator power factor should be within the limits given in paragraph 9.6 for the three test voltages 230 V $-6\%$ , 230 V and 230 V $+10\%$ .                   | micro-generator.                            |         |  |



| Engineering recommendation G98/1 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            |         |  |
|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|---------|--|
| Clause                           | Requirement – Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Result – Remark            | Verdict |  |
|                                  | The voltage shall be maintained within $\pm 1,5\%$ of the stated level during the test.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            |         |  |
|                                  | Micro-generator<br>generator<br>Controller<br>pf<br>Variac<br>Distribution<br>Network                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            |         |  |
|                                  | NOTE 1. For reasons of clarity the points of isolation are not shown<br>NOTE 2: It is permissible to use a voltage regulator or tapped transformer to perform this<br>test rather than a variac as shown                                                                                                                                                                                                                                                                                                                                                                                          |                            |         |  |
|                                  | Figure A2.4 test set up – Power Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                            |         |  |
| A 2.3.3                          | Voltage Flicker                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | The unit is no synchronous | N/A     |  |
|                                  | The test must be carried out with a minimum<br>of 2 kW of rated Micro-generators. Where an<br>individual Micro-generator is smaller than 2<br>kW it should be tested as a group. However,<br>where a Micro-generator is designed to be<br>installed singly in an installation then this can<br>be tested alone, for example a domestic CHP<br>unit. The maximum group size for the test is<br>3,68 kW.<br>The Micro-generator or group shall meet the<br>required dmax, dc, d(t), Pst, Plt requirements<br>of BS EN 61000-3-3 with a scaling factor<br>applied as follows for each voltage change | micro-generator.           |         |  |
|                                  | component.<br>dmax, dc, d(t), Pst, Plt × rating of Micro-<br>generator being tested (kW) per phase / 3,68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            |         |  |
|                                  | For voltage change and flicker<br>measurements the following simplified<br>formula is to be used to convert the<br>measured values to the normalised values<br>where the power factor of the Micro-<br>generator output is 0,98 or above. Where it is<br>less than 0,98 then compliance with the full<br>requirements of BS EN 61000-3-3 is<br>required.                                                                                                                                                                                                                                          |                            |         |  |
|                                  | Normalised value = Measured value ×<br>reference source resistance/measured<br>source resistance at test point.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            |         |  |
|                                  | And for units which are tested as a group.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                            |         |  |
|                                  | Normalised value = Measured value ×<br>reference source resistance/measured<br>source resistance at test point × 3,68/rating<br>per phase.                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                            |         |  |
|                                  | Single phase units reference source resistance is 0,4 $\Omega$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                            |         |  |
|                                  | Two phase units in a three phase system reference source resistance is 0,4 $\Omega$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            |         |  |
|                                  | Two phase units in a split phase system reference source resistance is 0,24 $\Omega$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                            |         |  |



| Engineering recommendation G98/1 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                             |         |  |
|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|---------|--|
| Clause                           | Requirement – Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Result – Remark                             | Verdict |  |
|                                  | Three phase units reference source resistance is 0,24 $\Omega$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                             |         |  |
|                                  | The stopping test should be a trip from full load output.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |         |  |
|                                  | The dates and location of the tests need to<br>be noted in the Type Test Verification Report,<br>Appendix 3 Form C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                             |         |  |
|                                  | Hydro Micro-generators with manually fixed<br>output or where the output is fixed by<br>controlling the water flow through the turbine<br>to a steady rate, need to conform to the<br>maximum voltage change requirements of<br>BS EN 61000-3-2 but do not need to be<br>tested for Pst or Plt.                                                                                                                                                                                                                                                                                                                                                                                                                          |                                             |         |  |
| A 2.3.4                          | Short Circuit Current Contribution for<br>Directly Coupled technology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | The unit is no synchronous micro-generator. | N/A     |  |
|                                  | DNOs need to understand the contribution a<br>Micro-generator makes to system fault levels<br>in order to determine that they can continue<br>to safely operate without exceeding design<br>fault levels for switchgear and other circuit<br>components.                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                             |         |  |
|                                  | For rotating machines and linear piston machines the test should produce a $0 - 2$ s plot of the short circuit current as seen at the Micro-generator terminals.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                             |         |  |
|                                  | The short circuit current contribution shall be<br>measured upon application of a short circuit<br>on the Micro-generator terminals (all phases /<br>phase to neutral) with the Micro-generator(s)<br>operating at rated output steady state<br>conditions.                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                             |         |  |
|                                  | Current measurements shall be taken from<br>application of fault until the time the fault has<br>been disconnected, following operation of the<br>Micro-generator protection. A current decay<br>plot shall be produced for each phase from<br>inception of the fault until the Micro-generator<br>has been disconnected – trip time. The plot<br>shall show the highest value of peak short<br>circuit current, eg for a Micro-generator<br>supplying a purely inductive load the highest<br>value of peak short circuit current will result<br>when the fault is applied at a voltage zero.<br>Where practicable the tests will need to<br>determine values for all of the relevant<br>parameters listed in Table A.1. |                                             |         |  |
|                                  | Table A.1 Micro-generator Short Circuit<br>Parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                             |         |  |



| Engineering recommendation G98/1 |                                                             |                 |                                               |                 |         |
|----------------------------------|-------------------------------------------------------------|-----------------|-----------------------------------------------|-----------------|---------|
| Clause                           | Requirement – Test                                          |                 |                                               | Result – Remark | Verdict |
|                                  | Parameter<br>Peak short-circuit current                     | Symbol          | Method of Determination<br>Direct measurement |                 |         |
|                                  | Initial value of aperiodic component                        | A               | Direct measurement                            |                 |         |
|                                  | Initial symmetrical short-circuit current                   | lk"             | Interpolation of plot                         |                 |         |
|                                  | Decaying (aperiodic) component of short-<br>circuit current | Ídc             | Interpolation of plot<br>& calculation        |                 |         |
|                                  | Reactance / Resistance ratio of source                      | × <sub>/R</sub> | Calculation                                   |                 |         |



Report No.: PVGB2310WDG0087-1

# G98-1 Test Results:

## A1 Requirements for Type Testing of Inverter connected Mirco-generators



|                                                      | vpe Verificatio<br>safety - fault c                                 |               |                   |       |                    |               |               |                                                                                                        | Ρ                             |  |
|------------------------------------------------------|---------------------------------------------------------------------|---------------|-------------------|-------|--------------------|---------------|---------------|--------------------------------------------------------------------------------------------------------|-------------------------------|--|
| Test result:                                         | SUN2000-3.68                                                        | KTL-L1        |                   |       |                    |               |               |                                                                                                        |                               |  |
|                                                      | ambient tempe                                                       | erature [°    | °C]:              |       | 24,9               |               |               |                                                                                                        |                               |  |
|                                                      | model/type of                                                       | power sı      | upply:            |       | AC: 656<br>DC: 621 | 60<br>50h-100 |               |                                                                                                        |                               |  |
|                                                      | manufacturer                                                        | of power      | supply:           |       | Chroma             | l             |               |                                                                                                        |                               |  |
|                                                      | rated markings of power supply: AC: 0-300V, 6kVA<br>DC: 0-1000V,15A |               |                   |       |                    |               |               |                                                                                                        |                               |  |
| component                                            | fault                                                               | test cor      | ndition           | test  | fuse               | fault co      | ondition      |                                                                                                        |                               |  |
| No.                                                  | fault                                                               | AC            | DC                | time  | No.                | AC            | DC            | res                                                                                                    | sult                          |  |
| Relay defect<br>Q501_PIN1-<br>PIN2                   | Short before<br>Start up                                            | 220V<br><0,1A | 530V<br><0,1<br>A | 10min |                    | 220V<br><0,1A | 530V<br><0,1A | PCE can't start<br>Error message:<br>No damage, no<br>reconnetion.                                     | "Device fault".<br>hazard, no |  |
| Relay defect<br>Q502_<br>PIN1-PIN2                   | Short before<br>Start up                                            | 220V<br><0,1A | 530V<br><0,1<br>A | 10min |                    | 220V<br><0,1A | 530V<br><0,1A | PCE can't start up.<br>Error message: "Device fault".<br>No damage, no hazard, no<br>reconnetion.      |                               |  |
| Grid voltage<br>monitoring<br>R1048                  | Open                                                                | 220V<br>22,7A | 530V<br>9,6A      | 10min |                    | 220V<br><0,1A | 530V<br><0,1A | PCE can't start up.<br>Error message: "Grid<br>undervolt".<br>No damage, no hazard, no<br>reconnetion. |                               |  |
| Grid voltage<br>monitoring<br>R104                   | Open                                                                | 220V<br>22,7A | 530V<br>9,6A      | 10min |                    | 220V<br><0,1A | 530V<br><0,1A | PCE can't start<br>Error message:<br>undervolt".<br>No damage, no<br>reconnetion.                      | "Grid                         |  |
| Grid voltage<br>monitoring<br>R1048                  | Open                                                                | 220V<br>22,7A | 530V<br>9,6A      | 10min |                    | 220V<br><0,1A | 530V<br><0,1A | Unit shutdown i<br>Error message:<br>undervolt".<br>No damage, no<br>reconnetion.                      | "Grid                         |  |
| Grid voltage<br>monitoring<br>R1048                  | Short                                                               | 220V<br>22,7A | 530V<br>9,6A      | 10min |                    | 220V<br><0,1A | 530V<br><0,1A | Unit shutdown i<br>Error message:<br>undervolt".<br>No damage, no<br>reconnetion.                      | "Grid                         |  |
| RCMU<br>detect<br>R101                               | Open                                                                | 220V<br>22,7A | 530V<br>9,6A      | 10min |                    | 220V<br><0,1A | 530V<br><0,1A | Unit shutdown i<br>Error message:<br>No damage, no<br>reconnetion.                                     | "RCD fault".                  |  |
| RCMU<br>detect<br>C1303<br>PIN1-PIN2                 | Open                                                                | 220V<br>22,7A | 530V<br>9,6A      | 10min |                    | 220V<br><0,1A | 530V<br><0,1A | Unit shutdown i<br>Error message:<br>No damage, no<br>reconnetion.                                     | "RCD fault".                  |  |
| Grid current<br>sensor<br>defect<br>U74.5-<br>>U74.4 | Open                                                                | 220V<br>22,7A | 530V<br>9,6A      | 10min |                    | 220V<br><0,1A | 530V<br><0,1A | Unit shutdown i<br>Error message:<br>No damage, no<br>reconnetion.                                     | "Device fault".               |  |

No. 96, Guantai Road (Houjie Section), Houjie Town, Dongguan City, Guangdong Province, 523942, People's Republic of China Page 38 of 93



| component                                             | 6 H                      | test cor      | ndition           | test  | fuse | fault co      | ondition      |                                                                                                                     |
|-------------------------------------------------------|--------------------------|---------------|-------------------|-------|------|---------------|---------------|---------------------------------------------------------------------------------------------------------------------|
| No.                                                   | fault                    | AC            | DC                | time  | No.  | AC            | DC            | result                                                                                                              |
| Grid current<br>sensor<br>defect<br>U74.5-<br>>U74.11 | Open                     | 220V<br>22,7A | 530V<br>9,6A      | 10min |      | 220V<br><0,1A | 530V<br><0,1A | Unit shutdown immediately.<br>Error message: "Device fault".<br>No damage, no hazard, no<br>reconnetion.            |
| BUS voltage<br>defect<br>D61.3-<br>>D61.2             | Short                    | 220V<br>22,7A | 530V<br>9,6A      | 10min |      | 220V<br><0,1A | 530V<br><0,1A | Unit shutdown immediately.<br>Error message: "Device fault".<br>No damage, no hazard, no<br>reconnetion.            |
| BUS voltage<br>defect<br>D61.3-<br>>D61.1             | Short                    | 220V<br>22,7A | 530V<br>9,6A      | 10min |      | 220V<br><0,1A | 530V<br><0,1A | Unit shutdown immediately.<br>Error message: "Device fault".<br>No damage, no hazard, no<br>reconnetion.            |
| PV voltage<br>defect<br>D49.3-<br>>D49.2              | Short                    | 220V<br>22,7A | 530V<br>9,6A      | 10min |      | 220V<br><0,1A | 530V<br><0,1A | Unit shutdown immediately.<br>Error message: "PV Arry<br>Voltage High".<br>No damage, no hazard, no<br>reconnetion. |
| PV voltage<br>defect<br>D49.3-<br>>D49.1              | Short                    | 220V<br>22,7A | 530V<br>9,6A      | 10min | 1    | 220V<br><0,1A | 530V<br><0,1A | Unit shutdown immediately.<br>Error message: "PV Arry<br>Voltage High".<br>No damage, no hazard, no<br>reconnetion. |
| ISO detect<br>R1116                                   | Short before<br>Start up | 220V<br><0,1A | 530V<br><0,1<br>A | 10min |      | 220V<br><0,1A | 530V<br><0,1A | PCE can't start up.<br>Error message: "ISO Fault".<br>No damage, no hazard, no<br>reconnetion.                      |
| ISO detect<br>Q5 PIN2-<br>PIN3                        | Short before<br>Start up | 220V<br><0,1A | 530V<br><0,1<br>A | 10min |      | 220V<br><0,1A | 530V<br><0,1A | PCE can't start up.<br>Error message: "ISO Fault".<br>No damage, no hazard, no<br>reconnetion.                      |
| ISO detect<br>K1101 Pin1-<br>Pin8                     | Short before<br>Start up | 220V<br><0,1A | 530V<br><0,1<br>A | 10min |      | 220V<br><0,1A | 530V<br><0,1A | PCE can't start up.<br>Error message: "ISO Fault".<br>No damage, no hazard, no<br>reconnetion.                      |
| MCU<br>communicat<br>ion defect<br>R943 PIN1-<br>PIN2 | Short                    | 220V<br>22,7A | 530V<br>9,6A      | 10min |      | 220V<br><0,1A | 530V<br><0,1A | Unit shutdown immediately.<br>Error message: "Device fault".<br>No damage, no hazard, no<br>reconnetion.            |
| MCU<br>communicat<br>ion defect<br>R261 PIN1-<br>PIN2 | Short                    | 220V<br>22,7A | 530V<br>9,6A      | 10min |      | 220V<br><0,1A | 530V<br><0,1A | Unit shutdown immediately.<br>Error message: "Device fault",<br>No damage, no hazard, no<br>reconnetion.            |
| AFCI defect<br>T2 PIN9-<br>PIN10                      | Short before<br>Start up | 220V<br><0,1A | 530V<br><0,1<br>A | 10min |      | 220V<br><0,1A | 530V<br><0,1A | PCE can't start up.<br>Error message: "AFCI Self-<br>Check Fault",<br>No damage, no hazard, no<br>reconnetion.      |
| AFCI defect<br>T2 PIN7-<br>PIN8                       | Short before<br>Start up | 220V<br><0,1A | 530V<br><0,1<br>A | 10min |      | 220V<br><0,1A | 530V<br><0,1A | PCE can't start up.<br>Error message: "AFCI Self-<br>Check Fault".<br>No damage, no hazard, no<br>reconnetion.      |



Report No.: PVGB2310WDG0087-1

| component                         | fault                    | test cor      | ndition           | test  | fuse | fault co      | ondition      | result                                                                                                                  |
|-----------------------------------|--------------------------|---------------|-------------------|-------|------|---------------|---------------|-------------------------------------------------------------------------------------------------------------------------|
| No.                               | iaun                     | AC            | DC                | time  | No.  | AC            | DC            | result                                                                                                                  |
| AFCI defect<br>D1403<br>PIN1-PIN2 | Short before<br>Start up | 220V<br><0,1A | 530V<br><0,1<br>A | 10min |      | 220V<br><0,1A | 530V<br><0,1A | Check Fault".<br>No damage, no hazard, no reconnetion.                                                                  |
| AFCI defect<br>D36 PIN1-<br>PIN2  | Short before<br>Start up | 220V<br><0,1A | 530V<br><0,1<br>A | 10min |      | 220V<br><0,1A | 530V<br><0,1A | PCE can't start up.<br>Error message: "AFCI Self-<br>Check Fault".<br>No damage, no hazard, no<br>reconnetion.          |
| AFCI defect<br>R1702              | Open before<br>Start up  | 220V<br><0,1A | 530V<br><0,1<br>A | 10min |      | 220V<br><0,1A | 530V<br><0,1A | PCE can't start up.<br>Error message: "AFCI Self-<br>Check Fault".<br>No damage, no hazard, no<br>reconnetion.          |
| Loss of<br>control<br>R105        | Open                     | 220V<br>22,7A | 530V<br>9,6A      | 10min |      | 220V<br><0,1A | 530V<br><0,1A | Unit shutdown immediately.<br>Error message: "Output<br>Current DCI Fault".<br>No damage, no hazard, no<br>reconnetion. |
| Loss of<br>control<br>R717        | Open                     | 220V<br>22,7A | 530V<br>9,6A      | 10min |      | 220V<br><0,1A | 530V<br><0,1A | Unit shutdown immediately.<br>Error message: "Output<br>Current DCI Fault".<br>No damage, no hazard, no<br>reconnetion. |

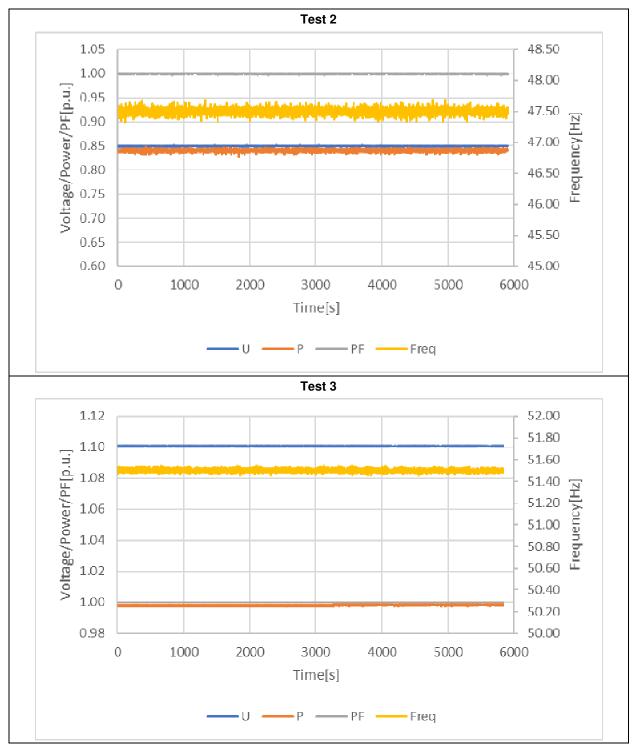
#### Note:

The errors in the control circuit simulate that the safety is even ensured during single fault.

The tests had been performed on the SUN2000-3.68KTL-L1 are valid for the SUN2000-2KTL-L1 and SUN2000-3KTL-L1, since it is same as in hardware and just power derated by software.

The test result were refer to original test report (with report No. PVUK191217N030-R1) issued by Bureau Veritas Shenzhen Co., Ltd. Dongguan Branch, dated on 2020-09-16.

#### Addendum – Shutdown device


| Each active phase can be switched.                                                                                                                                                                  | Yes. In each line and<br>neutral a Relay with<br>min. 2,00 mm gab<br>used. |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| If no galvanic separation between AC and DC (PV):<br>Two relays in series on each active phase are necessary to fulfil the basic insulation<br>or simple concertion based on the DV working voltage | Two relays in series<br>used in each active<br>phase (L and N).            |
| or simple separation based on the PV working voltage.                                                                                                                                               |                                                                            |

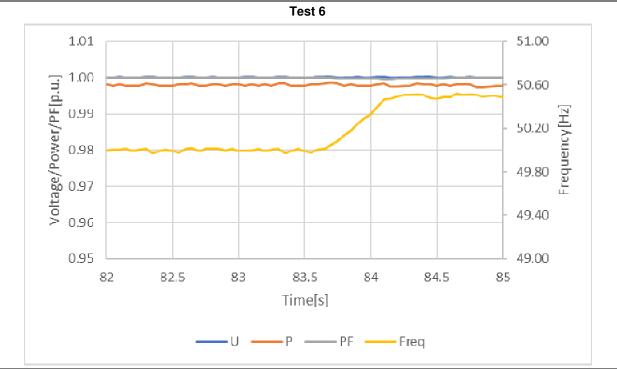


| Operating Range: This                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | s test should b                                                                              | e carrie                                           | ed out as specifie                                                                                                                                                     | d in A                                             | A.1.2.10                                                  |                                              |                                                            | Ρ             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-----------------------------------------------------------|----------------------------------------------|------------------------------------------------------------|---------------|
| Test result: SUN2000-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -3.68KTL-L1                                                                                  |                                                    |                                                                                                                                                                        |                                                    |                                                           |                                              |                                                            |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                              | Over-v                                             | voltage [V]:                                                                                                                                                           |                                                    |                                                           |                                              | 253,0                                                      |               |
| Setting valu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 95                                                                                           | Under-voltage [V]:                                 |                                                                                                                                                                        |                                                    |                                                           |                                              | 195,5                                                      |               |
| Cetting valu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 00                                                                                           | Over-frequency [Hz]:                               |                                                                                                                                                                        |                                                    |                                                           |                                              | 52,0                                                       |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                              |                                                    | r-frequency [Hz]:                                                                                                                                                      |                                                    |                                                           |                                              | 47,0                                                       |               |
| <ul> <li>Test 2: U = 198</li> <li>Test 3: U = 253</li> <li>Test 4: U = 253</li> <li>Test 5: U = 230</li> <li>Test 5: U = 230</li> <li>Test 6: Confirm</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5,5 V; f = 47,5<br>3,0 V; f = 51,5<br>3,0 V; f = 52,0<br>0,0 V; f = 50,0<br>n that the Micro | Hz; P =<br>Hz; P =<br>Hz; P =<br>Hz; P =<br>D-Gene | = 1,00 Sn; cosφ =<br>= 1,00 Sn; cosφ =<br>erating Plant is cap<br>nge of frequency | 1; at<br>1; at<br>1; at<br>1; at<br>1; at<br>pable | least 90<br>least 90<br>least 15<br>least 90<br>of stayin | mins<br>mins<br>mins<br>mins<br>ng connected |                                                            |               |
| Test sequence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Voltage [V                                                                                   | /]                                                 | Frequency [H:                                                                                                                                                          | z]                                                 | Outpu                                                     | t power [W]                                  | С                                                          | os φ [1]      |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 195,4                                                                                        |                                                    | 47,0                                                                                                                                                                   |                                                    |                                                           | 3093                                         |                                                            | 1,000         |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 195,4                                                                                        |                                                    | 47,5                                                                                                                                                                   |                                                    | 3094                                                      |                                              | 1,000                                                      |               |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 253,2                                                                                        |                                                    | 51,5                                                                                                                                                                   |                                                    | 3673                                                      |                                              | 1,000                                                      |               |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 253,2                                                                                        |                                                    | 52,0                                                                                                                                                                   |                                                    |                                                           | 3682                                         |                                                            | 1,000         |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 230,2                                                                                        |                                                    | 50,0                                                                                                                                                                   |                                                    | 3677                                                      |                                              |                                                            | 1,000         |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 230,0                                                                                        |                                                    | 50,0 Hz to 50,5                                                                                                                                                        |                                                    | 3673                                                      |                                              | 1,000                                                      |               |
| Graph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                              |                                                    |                                                                                                                                                                        |                                                    |                                                           |                                              |                                                            |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                              |                                                    | Test 1                                                                                                                                                                 |                                                    |                                                           |                                              |                                                            |               |
| 1.02<br>1.00<br>1.00<br>0.98<br>0.96<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.92<br>0.90<br>0.88<br>0.88<br>0.88<br>0.84<br>0.84<br>0.82<br>0.82<br>0.84<br>0.82<br>0.82<br>0.84<br>0.82<br>0.82<br>0.82<br>0.84<br>0.82<br>0.82<br>0.82<br>0.84<br>0.82<br>0.82<br>0.84<br>0.82<br>0.84<br>0.84<br>0.84<br>0.84<br>0.84<br>0.84<br>0.85<br>0.86<br>0.86<br>0.86<br>0.88<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0.86<br>0 | 5                                                                                            | U                                                  | 10 1<br>Time[s]                                                                                                                                                        | L5                                                 |                                                           | 20                                           | 47.1<br>- 47.0<br>- 46.9<br>- 46.7<br>- 46.6<br>46.9<br>25 | Erequency[Hz] |

No. 96, Guantai Road (Houjie Section), Houjie Town, Dongguan City, Guangdong Province, 523942, People's Republic of China Page 41 of 93






No. 96, Guantai Road (Houjie Section), Houjie Town, Dongguan City, Guangdong Province, 523942, People's Republic of China Page 42 of 93





No. 96, Guantai Road (Houjie Section), Houjie Town, Dongguan City, Guangdong Province, 523942, People's Republic of China Page 43 of 93





During the tests the interface protection was disabled.

Operation at reduced power is allowed during test 1 and 2, equal to the maximum power that can be supplied on reaching the maximum output current limit ( $P \ge 0.85$  Sn).

During the sequence of test 3 and test 4 automatic adjustment to reduce power in the case of over-frequency was disabled.

The tests had been performed on the SUN2000-3.68KTL-L1 are valid for the SUN2000-2KTL-L1 and SUN2000-3KTL-L1, since it is same as in hardware and just power derated by software.



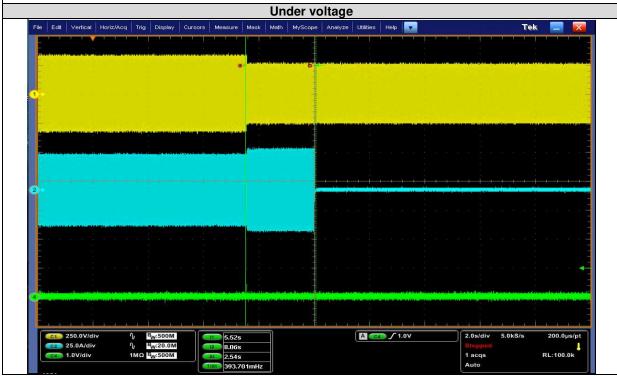
#### A 1.2.2/A 2.2.2 Over / Under Voltage

The test procedure in Annex A.1.2.2 (Inverter connected) or Annex A2 A.2.2.2 (Synchronous).

Ρ

### Test result: SUN2000-3.68KTL-L1

| Single Phase            |                    |      |         |            |                   |                    |  |  |  |  |
|-------------------------|--------------------|------|---------|------------|-------------------|--------------------|--|--|--|--|
| Function                | Set                | ting | Trip    | test       | No trip test      |                    |  |  |  |  |
|                         | Voltage Time delay |      | Voltage | Time delay | Voltage /<br>time | Confirm no<br>trip |  |  |  |  |
| U/V                     | 184,0V             | 2,5s | 183,6V  | 2,540s     | 188V /<br>5,0s    | No trip            |  |  |  |  |
|                         |                    |      |         |            |                   |                    |  |  |  |  |
| O/V stage 1             | 262,2V             | 1,0s | 261,5V  | 1,080s     | 258,2V /<br>5,0s  | No trip            |  |  |  |  |
| O/V stage 2 273,7V 0,5s |                    |      | 273,0V  | 0,540s     | 269,7V /<br>0,95s | No trip            |  |  |  |  |
|                         |                    |      |         |            |                   |                    |  |  |  |  |


### Note:

The total disconnection time for voltage and frequency protection, including the operating time of the disconnection device, shall be the time delay setting with a tolerance of, -0s + 0.5 s.

The Voltage required to trip is the setting  $\pm 3,45$  V. The time delay can be measured at a larger deviation than the minimum required to operate the protection. The No trip tests need to be carried out at the setting  $\pm 4$  V and for the relevant times as shown in the table above to ensure that the protection will not trip in error.

The tests had been performed on the SUN2000-3.68KTL-L1 are valid for the SUN2000-2KTL-L1 and SUN2000-3KTL-L1, since it is same as in hardware and just power derated by software.

The test result were refer to original test report (with report No. PVUK191217N030-R1) issued by Bureau Veritas Shenzhen Co., Ltd. Dongguan Branch, dated on 2020-09-16.



Bureau Veritas Shenzhen Co., Ltd. Dongguan Branch No. 96, Guantai Road (Houjie Section), Houjie Town, Dongguan City, Guangdong Province, 523942, People's Republic of China Page 45 of 93

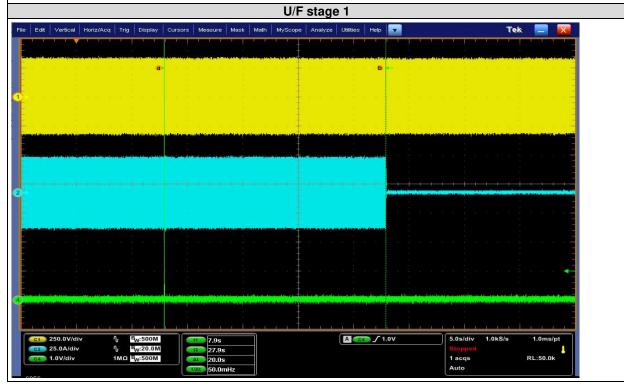


|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                     | oltage stage 1                                                                                                   |                                                                                                                                                                                                                                   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| File Edit Vertical Horiz/Acq Trig Display                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Cursors Measure Mask Math           | MyScope Analyze Utilities Help                                                                                   | Tek 📃 🕺                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                     |                                                                                                                  | lann mandain a an tao tao maritra ta tao tao tao t                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | a b                                 |                                                                                                                  |                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                     |                                                                                                                  |                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                     |                                                                                                                  |                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                     |                                                                                                                  |                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                     |                                                                                                                  |                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                     |                                                                                                                  |                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                     | 4                                                                                                                |                                                                                                                                                                                                                                   |
| 2+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                                                                                                                  |                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                     |                                                                                                                  |                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                     |                                                                                                                  |                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                     |                                                                                                                  |                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                     |                                                                                                                  |                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                     |                                                                                                                  |                                                                                                                                                                                                                                   |
| 4<br>4<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                     |                                                                                                                  | ana an Ina akala na ana mana ang kanalan ang kanana kanana kanana kanana kanana kanana kanana kanana kanana ka<br>Manana manana kanana |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                     |                                                                                                                  |                                                                                                                                                                                                                                   |
| (250.0V/div ∿ B <sub>W</sub> :500M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6.14s                               | δ                                                                                                                | 2.0s/div 5.0kS/s 200.0µs/pt                                                                                                                                                                                                       |
| (02 25.0A/div 小 <sup>B</sup> <sub>W</sub> :20.0M<br>(03 1.0V/div 1MΩ <sup>B</sup> <sub>W</sub> :500M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7.22s<br>1.08s                      |                                                                                                                  | Stopped  <br>1 acqs RL:100.0k                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.005                               |                                                                                                                  |                                                                                                                                                                                                                                   |
| COPEC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 925.926mHz                          |                                                                                                                  | Auto                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                     | oltage stage 2                                                                                                   |                                                                                                                                                                                                                                   |
| File Edit Vertical Horiz/Acq Trig Display                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Over v                              | and the second |                                                                                                                                                                                                                                   |
| File Edit Vertical Horiz/Acq Trig Display                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Over v                              | and the second | Auto                                                                                                                                                                                                                              |
| File Edit Vertical Horiz/Acq Trig Display                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Over v                              | and the second | Auto                                                                                                                                                                                                                              |
| File Edit Vertical Horiz/Acq Trig Display                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Over v                              | and the second | Auto                                                                                                                                                                                                                              |
| File Edit Vertical Horiz/Acq Trig Display                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Over v                              | and the second | Auto                                                                                                                                                                                                                              |
| File Edit Vertical Horiz/Acq Trig Display                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Over v                              | and the second | Auto                                                                                                                                                                                                                              |
| File Edit Vertical Horiz/Acq Trig Display                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Over v                              | and the second | Auto                                                                                                                                                                                                                              |
| File Edit Vertical Horiz/Acq Trig Display                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Over v                              | and the second | Auto                                                                                                                                                                                                                              |
| Fie Edit Vertical Horiz/Acq Trig Display                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Over v                              | and the second | Auto                                                                                                                                                                                                                              |
| File Edit Vertical Horiz/Acq Trig Display                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Over v                              | and the second | Auto                                                                                                                                                                                                                              |
| File Edit Vertical Horiz/Acq Trig Display                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Over v                              | and the second | Auto                                                                                                                                                                                                                              |
| File Edit Vertical Horiz/Acq Trig Display                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Over v                              | and the second | Auto                                                                                                                                                                                                                              |
| File Edit Vertical Horiz/Acq Trig Display                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Over v                              | and the second | Auto                                                                                                                                                                                                                              |
| File Edit Vertical Horiz/Acq Trig Display                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Over v                              | and the second | Auto                                                                                                                                                                                                                              |
| Prie Edit Vertical Horiz/Acq Trig Display                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Over v                              | and the second | Auto                                                                                                                                                                                                                              |
| File       Edit       Vertical       Horiz/Acq       Trig       Display         File       Edit       Vertical       Horiz/Acq       Trig       Display         Image: State St | Over v                              | and the second | Auto                                                                                                                                                                                                                              |
| Pile Edit Vertical Horiz/Acq Trig Display                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Over v                              | and the second | Auto                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Cursors Measure Mask Math           | and the second | Auto                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Over v<br>Cursors Measure Mask Math | MyScope Analyze Utilies Help                                                                                     |                                                                                                                                                                                                                                   |

No. 96, Guantai Road (Houjie Section), Houjie Town, Dongguan City, Guangdong Province, 523942, People's Republic of China Page 46 of 93

TRF No. G98/1 VER.2




| A 1.2.3/A 2.2.3 Over / Under Frequency<br>The test procedure in Annex A.1.2.3 (Inverter connected) or Annex A2 A.2.2.3 (Synchronous). |                |            |           |            |                     |                    |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------|----------------|------------|-----------|------------|---------------------|--------------------|--|--|--|
| Test result: SUN                                                                                                                      | 2000-3.68KTL-L | _1         |           |            |                     |                    |  |  |  |
| Function                                                                                                                              | Set            | ting       | Trip      | test       | No tri              | p test             |  |  |  |
|                                                                                                                                       | Frequency      | Time delay | Frequency | Time delay | Frequency /<br>time | Confirm no<br>trip |  |  |  |
| U/F stage 1                                                                                                                           | 47,5Hz         | 20s        | 47,5Hz    | 20,000s    | 47,7Hz /<br>30s     | No trip            |  |  |  |
| U/F stage 2                                                                                                                           | 47Hz           | 0,5s       | 47,0Hz    | 0,540s     | 47,2Hz /<br>19,5s   | No trip            |  |  |  |
|                                                                                                                                       |                |            |           |            | 46,8 Hz /<br>0,45s  | No trip            |  |  |  |
| O/F                                                                                                                                   | 52Hz           | 0,5s       | 52,0Hz    | 0,520s     | 51,8Hz /<br>120,0s  | No trip            |  |  |  |
|                                                                                                                                       |                |            |           |            | 52,2 Hz /<br>0,45s  | No trip            |  |  |  |

The total disconnection time for voltage and frequency protection, including the operating time of the disconnection device, shall be the time delay setting with a tolerance of, -0s + 0.5 s.

For frequency trip tests the frequency required to trip is the setting  $\pm$  0,5 Hz. In order to measure the time delay a larger deviation than the minimum required to operate the projection can be used. The "No trip tests" need to be carried out at the setting  $\pm$  0,2 Hz and for the relevant times as shown in the table above to ensure that the protection will not trip in error.

The tests had been performed on the SUN2000-3.68KTL-L1 are valid for the SUN2000-2KTL-L1 and SUN2000-3KTL-L1, since it is same as in hardware and just power derated by software.

The test result were refer to original test report (with report No. PVUK191217N030-R1) issued by Bureau Veritas Shenzhen Co., Ltd. Dongguan Branch, dated on 2020-09-16.



Bureau Veritas Shenzhen Co., Ltd. Dongguan Branch No. 96, Guantai Road (Houjie Section), Houjie Town, Dongguan City, Guangdong Province, 523942, People's Republic of China Page 47 of 93



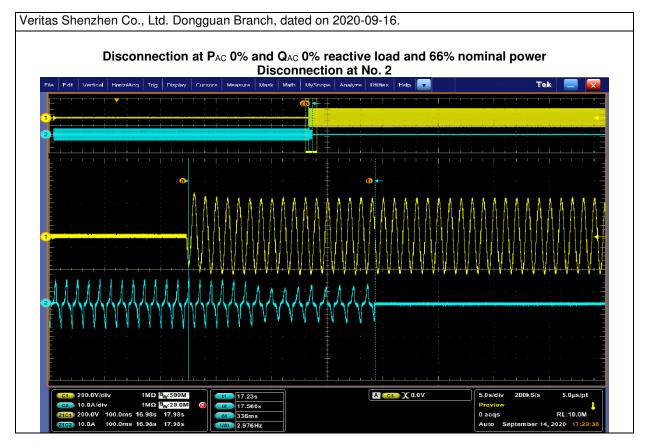
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | U/F s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | stage 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|
| File Edit Vertical Horiz/Acq Trig Display                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Cursors Measure Mask Math MySc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ope Analyze Utilities Help 🔽                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Tek 📃 🔀                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n en en de la completen e desertan i forma antici da en el                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | a b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | An property of the original state of the sta |                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |
| <b>0</b> +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ▲                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.0s/div 5.0kS/s 200.0µs/pt         |
| 25.0A/div η Β <sub>W</sub> :220.0M     300      1.0V/div 1MΩ Β <sub>W</sub> :500M     5000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 41 540ms<br>1.852Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | D/F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Stopped<br>1 acqs RL:100.0k<br>Auto |
| File Edit Vertical Horiz/Acq Trig Display                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Tek 🚍 🔀                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | a b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |
| e+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |
| Contraction of the state of the | and a subsection of the state of the subsection |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |
| C1 250.0V/div 1/ Bw:500M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A Cas / 1.0V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.0s/div 5.0kS/s 200.0µs/pt         |



| The I                                                                                                                          | <b>1.2.4 Loss of mains protection according BS EN 62116</b><br>he requirement is specified in section 10.2, test procedure in Annex A.1.2.4<br>oad imbalance (real, reactive load) for test condition A (EUT output = 100%) |         |                                      |                                                    |                                                    |                                      |                        |                         |       |                 | Р                     |  |
|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------------------------------------|----------------------------------------------------|----------------------------------------------------|--------------------------------------|------------------------|-------------------------|-------|-----------------|-----------------------|--|
| Test                                                                                                                           | Test result: SUN2000-3.68KTL-L1                                                                                                                                                                                             |         |                                      |                                                    |                                                    |                                      |                        |                         |       |                 |                       |  |
| Test conditions       Frequency: 50+/-0,1Hz         UN=230+/-3Vac       UN=230+/-3Vac         Distortion factor of chokes < 2% |                                                                                                                                                                                                                             |         |                                      |                                                    |                                                    |                                      |                        |                         |       |                 |                       |  |
| Di                                                                                                                             | sconnection                                                                                                                                                                                                                 | limit   |                                      | 0,5s                                               |                                                    |                                      |                        |                         |       |                 |                       |  |
| No                                                                                                                             | P <sub>EUT</sub> <sup>1)</sup><br>(% of EUT<br>rating)                                                                                                                                                                      | (% of   | ve load<br>Q∟ in<br>d) <sup>1)</sup> | P <sub>AC</sub> <sup>2)</sup><br>(% of<br>nominal) | Q <sub>AC</sub> <sup>3)</sup><br>(% of<br>nominal) | I <sub>AC</sub> <sup>4)</sup><br>[A] | Run on<br>Time<br>(ms) | P <sub>EUT</sub><br>(W) | Qf    | V <sub>DC</sub> | Remarks <sup>5)</sup> |  |
| 1                                                                                                                              | 100                                                                                                                                                                                                                         | 1(      | 00                                   | 0                                                  | 0                                                  | 0,140                                | 308                    | 3680                    | 1,000 | 480             | Test A at BL          |  |
| 32                                                                                                                             | 100                                                                                                                                                                                                                         | 1(      | 00                                   | -10                                                | -10                                                |                                      | 250                    | 3680                    | 1,054 | 480             | Test A at IB          |  |
| 33                                                                                                                             | 100                                                                                                                                                                                                                         | 1(      | 00                                   | -10                                                | -5                                                 |                                      | 267                    | 3680                    | 1,083 | 480             | Test A at IB          |  |
| 34                                                                                                                             | 100                                                                                                                                                                                                                         | 1(      | 00                                   | -10                                                | 0                                                  |                                      | 295                    | 3680                    | 1,111 | 480             | Test A at IB          |  |
| 35                                                                                                                             | 100                                                                                                                                                                                                                         | 1(      | 00                                   | -10                                                | +5                                                 |                                      | 287                    | 3680                    | 1,139 | 480             | Test A at IB          |  |
| 36                                                                                                                             | 100                                                                                                                                                                                                                         | 1(      | 00                                   | -10                                                | +10                                                |                                      | 278                    | 3680                    | 1,165 | 480             | Test A at IB          |  |
| 37                                                                                                                             | 100                                                                                                                                                                                                                         | 1(      | 00                                   | -5                                                 | -10                                                |                                      | 258                    | 3680                    | 0,999 | 480             | Test A at IB          |  |
| 4                                                                                                                              | 100                                                                                                                                                                                                                         | 1(      | 00                                   | -5                                                 | -5                                                 |                                      | 278                    | 3680                    | 1,026 | 480             | Test A at IB          |  |
| 5                                                                                                                              | 100                                                                                                                                                                                                                         | 1(      | 00                                   | -5                                                 | 0                                                  |                                      | 316                    | 3680                    | 1,053 | 480             | Test A at IB          |  |
| 6                                                                                                                              | 100                                                                                                                                                                                                                         | 1(      | 00                                   | -5                                                 | +5                                                 |                                      | 294                    | 3680                    | 1,079 | 480             | Test A at IB          |  |
| 38                                                                                                                             | 100                                                                                                                                                                                                                         | 1(      | 00                                   | -5                                                 | +10                                                |                                      | 278                    | 3680                    | 1,104 | 480             | Test A at IB          |  |
| 39                                                                                                                             | 100                                                                                                                                                                                                                         | 1(      | 00                                   | 0                                                  | -10                                                |                                      | 287                    | 3680                    | 0,949 | 480             | Test A at IB          |  |
| 7                                                                                                                              | 100                                                                                                                                                                                                                         | 1(      | 00                                   | 0                                                  | -5                                                 |                                      | 266                    | 3680                    | 0,975 | 480             | Test A at IB          |  |
| 8                                                                                                                              | 100                                                                                                                                                                                                                         | 1(      | 00                                   | 0                                                  | +5                                                 |                                      | 270                    | 3680                    | 1,025 | 480             | Test A at IB          |  |
| 40                                                                                                                             | 100                                                                                                                                                                                                                         | 1(      | 00                                   | 0                                                  | +10                                                |                                      | 303                    | 3680                    | 1,049 | 480             | Test A at IB          |  |
| 41                                                                                                                             | 100                                                                                                                                                                                                                         | 1(      | 00                                   | +5                                                 | -10                                                |                                      | 273                    | 3680                    | 0,904 | 480             | Test A at IB          |  |
| 9                                                                                                                              | 100                                                                                                                                                                                                                         | 1(      | 00                                   | +5                                                 | -5                                                 |                                      | 281                    | 3680                    | 0,928 | 480             | Test A at IB          |  |
| 10                                                                                                                             | 100                                                                                                                                                                                                                         | 1(      | 00                                   | +5                                                 | 0                                                  |                                      | 297                    | 3680                    | 0,952 | 480             | Test A at IB          |  |
| 11                                                                                                                             | 100                                                                                                                                                                                                                         | 1(      | 00                                   | +5                                                 | +5                                                 |                                      | 282                    | 3680                    | 0,976 | 480             | Test A at IB          |  |
| 42                                                                                                                             | 100                                                                                                                                                                                                                         | 1(      | 00                                   | +5                                                 | +10                                                |                                      | 283                    | 3680                    | 0,999 | 480             | Test A at IB          |  |
| 43                                                                                                                             | 100                                                                                                                                                                                                                         | 1(      | 00                                   | +10                                                | -10                                                |                                      | 276                    | 3680                    | 0,862 | 480             | Test A at IB          |  |
| 44                                                                                                                             | 100                                                                                                                                                                                                                         | 1(      | 00                                   | +10                                                | -5                                                 |                                      | 277                    | 3680                    | 0,886 | 480             | Test A at IB          |  |
| 45                                                                                                                             | 100                                                                                                                                                                                                                         | 1(      | 00                                   | +10                                                | 0                                                  |                                      | 345                    | 3680                    | 0,909 | 480             | Test A at IB          |  |
| 46                                                                                                                             | 100                                                                                                                                                                                                                         | 1(      | 00                                   | 0 +10 +5 297 3680 0,932 4                          |                                                    |                                      |                        |                         |       | 480             | Test A at IB          |  |
| 47                                                                                                                             | 100                                                                                                                                                                                                                         | 1(      | 00                                   | +10                                                | +10                                                |                                      | 278                    | 3680                    | 0,953 | 480             | Test A at IB          |  |
|                                                                                                                                | Paramete                                                                                                                                                                                                                    | r at 0% |                                      | L= 4                                               | 5,76 mH                                            |                                      | R= 14,3                | 38 Ω                    |       | C= 22           | 21,43 μF              |  |

No. 96, Guantai Road (Houjie Section), Houjie Town, Dongguan City, Guangdong Province, 523942, People's Republic of China Page 49 of 93

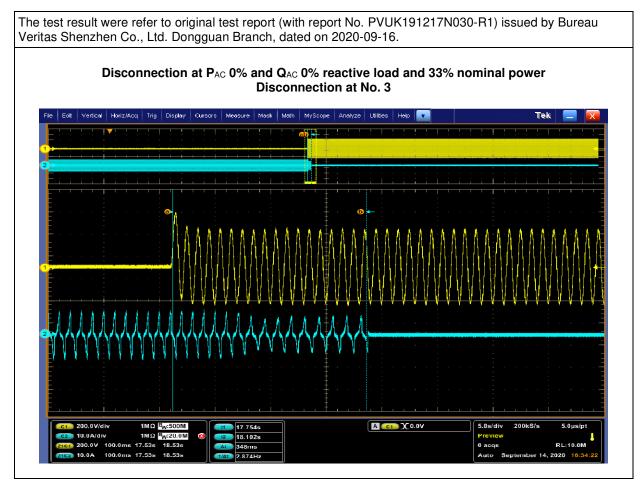



| Indicate additional shut down time included in above results.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 20ms                    |  |  |  |  |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--|--|--|--|--|--|--|--|--|
| (Disconnection device operation time)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20113                   |  |  |  |  |  |  |  |  |  |
| Note:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                         |  |  |  |  |  |  |  |  |  |
| Note for technologies which have a substantial shut down time this can be added to the 0,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         |  |  |  |  |  |  |  |  |  |
| establishing that the trip occurred in less than 0,5 s. Maximum shut down time could there                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | fore be up to 1,0       |  |  |  |  |  |  |  |  |  |
| seconds for these technologies.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |  |  |  |  |  |  |  |  |  |
| RLC is adjusted to min. +/-1% of the inverter rated output power                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |  |  |  |  |  |  |  |  |  |
| <sup>1)</sup> P <sub>EUT</sub> : EUT output power                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         |  |  |  |  |  |  |  |  |  |
| <sup>2)</sup> P <sub>AC</sub> : Real power flow at S1 in Figure 1. Positive means power from EUT to utility. Nomin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | al is the 0 % test      |  |  |  |  |  |  |  |  |  |
| condition value.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |  |  |  |  |  |  |  |  |  |
| <sup>3)</sup> Q <sub>AC</sub> : Reactive power flow at S1 in Figure 1. Positive means power from EUT to utility. No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                         |  |  |  |  |  |  |  |  |  |
| est condition value.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                         |  |  |  |  |  |  |  |  |  |
| <sup>4)</sup> Fundamental of I <sub>AC</sub> when RLC is adjusted.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                         |  |  |  |  |  |  |  |  |  |
| <sup>5)</sup> BL: Balance condition, IB: Imbalance condition.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                         |  |  |  |  |  |  |  |  |  |
| Condition A:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                         |  |  |  |  |  |  |  |  |  |
| EUT output power PEUT = Maximum $^{5)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                         |  |  |  |  |  |  |  |  |  |
| EUT input voltage $^{6)} = >75\%$ of rated input voltage range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                         |  |  |  |  |  |  |  |  |  |
| <sup>6)</sup> Maximum EUT output power condition should be achieved using the maximum allowable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | e input power.          |  |  |  |  |  |  |  |  |  |
| Actual output power may exceed nominal rated output.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                         |  |  |  |  |  |  |  |  |  |
| <sup>7)</sup> Based on EUT rated input operating range. For example, If range is between X volts and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                         |  |  |  |  |  |  |  |  |  |
| range =X + 0,75 × (Y – X). Y shall not exceed 0,8 × EUT maximum system voltage (i.e., m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                         |  |  |  |  |  |  |  |  |  |
| array open circuit voltage). In any case, the EUT should not be operated outside of its allo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | wable input voltage     |  |  |  |  |  |  |  |  |  |
| range.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                         |  |  |  |  |  |  |  |  |  |
| The tests had been performed on the SUN2000-3.68KTL-L1 are valid for the SUN2000-2k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (TL-L1 and              |  |  |  |  |  |  |  |  |  |
| SUN2000-3KTL-L1, since it is same as in hardware and just power derated by software.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                         |  |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |  |  |  |  |  |  |  |  |  |
| The test result were refer to original test report (with report No. PVUK191217N030-R1) iss                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ued by Bureau           |  |  |  |  |  |  |  |  |  |
| Veritas Shenzhen Co., Ltd. Dongguan Branch, dated on 2020-09-16.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |  |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |  |  |  |  |  |  |  |  |  |
| Disconnection at $P_{AC}$ 0% and $Q_{AC}$ 0% reactive load and 100% nominal p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ower                    |  |  |  |  |  |  |  |  |  |
| Disconnection at No. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Tek 🥅 🌄                 |  |  |  |  |  |  |  |  |  |
| Verucal Humphou Hugge Display Cursols weasure main wasks Save Necan Hep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                         |  |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |  |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |  |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |  |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |  |  |  |  |  |  |  |  |  |
| · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u>.</u> <del>.</del>   |  |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |  |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |  |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | VAVAVAVAVAVA            |  |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |  |  |  |  |  |  |  |  |  |
| A . A . A . A . A . A . A . A . A . A .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                         |  |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |  |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |  |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |  |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u>-</u> <u>-</u>       |  |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |  |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |  |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |  |  |  |  |  |  |  |  |  |
| C1 200.0V/d/v 1MΩ <sup>Q</sup> <sub>W</sub> :500M t1 13.39s<br>C2 10.0A/div 1MΩ <sup>B</sup> <sub>W</sub> :20.0M t2 13.69s Stopped                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 200kS/s 5.0µs/pt        |  |  |  |  |  |  |  |  |  |
| 200.0V 100.0ms 13.00s 14.00s at 3000 ms 13.00s 14.00s at 30000 ms 13.00s 14.00s 14.0 | RL:10.0M                |  |  |  |  |  |  |  |  |  |
| Auto Sept                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ember 14, 2020 11:33:25 |  |  |  |  |  |  |  |  |  |
| Cursor Controls Source Cursor Type Move Curso                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | rs X                    |  |  |  |  |  |  |  |  |  |
| Cursor 1     Cursor 2     H Bars     V Bars     Waveform     Screen       Ch 2     ▼     Ch 2     ▼                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Setup 🦉                 |  |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |  |  |  |  |  |  |  |  |  |

No. 96, Guantai Road (Houjie Section), Houjie Town, Dongguan City, Guangdong Province, 523942, People's Republic of China Page 50 of 93



| The r                                                                                                                                                                                              | A 1.2.4 Loss of mains protection according BS EN 62116<br>The requirement is specified in section 10.2, test procedure in Annex A.1.2.4<br>Load imbalance (real, reactive load) for test condition A (EUT output = 50 % - 66 %)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                  |                                                                                                                                     |              |           |         |                 |                       |        | Р            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------|---------|-----------------|-----------------------|--------|--------------|
|                                                                                                                                                                                                    | Test result: SUN2000-3.68KTL-L1         Frequency: 50+/-0,1Hz         UN=230+/-3Vac         Distortion factor of chokes < 2%         Quality =1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                  |                                                                                                                                     |              |           |         |                 |                       |        |              |
| Di                                                                                                                                                                                                 | sconnection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | limit                                                            |                                                                                                                                     |              |           | 0,5s    |                 |                       |        |              |
| No                                                                                                                                                                                                 | P <sub>EUT</sub> <sup>1)</sup><br>(% of EUT<br>rating)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Reactive load<br>(% of Q <sub>L</sub> in<br>6.1.d) <sup>1)</sup> | $Q_{L}$ in (% of (% of $\begin{bmatrix} I_{AC}^{4} \\ I_{A} \end{bmatrix}$ Time $\begin{bmatrix} P_{EUT} \\ I_{A} \end{bmatrix}$ Qf |              |           | Qf      | V <sub>DC</sub> | Remarks <sup>5)</sup> |        |              |
| 12                                                                                                                                                                                                 | 66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 66                                                               | 0                                                                                                                                   | -5           |           | 275     | 2429            | 0,974                 | 300    | Test B at IB |
| 13                                                                                                                                                                                                 | 66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 66                                                               | 0                                                                                                                                   | -4           |           | 282     | 2429            | 0,979                 | 300    | Test B at IB |
| 14                                                                                                                                                                                                 | 66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 66                                                               | 0                                                                                                                                   | -3           |           | 280     | 2429            | 0,984                 | 300    | Test B at IB |
| 15                                                                                                                                                                                                 | 66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 66                                                               | 0                                                                                                                                   | -2           |           | 292     | 2429            | 0,990                 | 300    | Test B at IB |
| 16                                                                                                                                                                                                 | 66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 66                                                               | 0                                                                                                                                   | -1           |           | 308     | 2429            | 0,995                 | 300    | Test B at IB |
| 2                                                                                                                                                                                                  | 66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 66                                                               | 0                                                                                                                                   | 0            | 0,139     | 336     | 2429            | 1,000                 | 300    | Test B at BL |
| 17                                                                                                                                                                                                 | 66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 66                                                               | 0                                                                                                                                   | 1            |           | 316     | 2429            | 1,005                 | 300    | Test B at IB |
| 18                                                                                                                                                                                                 | 66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 66                                                               | 0                                                                                                                                   | 2            |           | 314     | 2429            | 1,009                 | 300    | Test B at IB |
| 19                                                                                                                                                                                                 | 66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 66                                                               | 0                                                                                                                                   | 3            |           | 288     | 2429            | 1,014                 | 300    | Test B at IB |
| 20                                                                                                                                                                                                 | 66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 66                                                               | 0                                                                                                                                   | 4            |           | 302     | 2429            | 1,019                 | 300    | Test B at IB |
| 21                                                                                                                                                                                                 | 66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 66                                                               | 0                                                                                                                                   | 5            |           | 287     | 2429            | 1,024                 | 300    | Test B at IB |
|                                                                                                                                                                                                    | Paramete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | r at 0%                                                          | L= 6                                                                                                                                | 9,32 mH      |           | R= 21,7 | 78 Ω            |                       | C= 1   | 46,16 μF     |
| (Disc                                                                                                                                                                                              | onnection de                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | shut down time<br>vice operation ti                              |                                                                                                                                     | above res    | ults.     |         |                 |                       |        | 20ms         |
| RLC i<br><sup>1)</sup> PEU<br><sup>2)</sup> PAC<br>condi<br><sup>3)</sup> QAC<br>test c<br><sup>4)</sup> Fur<br><sup>5)</sup> BL:<br>Cond<br>EUT i<br><sup>6)</sup> Bas<br>range<br>array<br>range | (Disconnection device operation time)       2011s         Note:       RLC is adjusted to min. +/-1% of the inverter rated output power <sup>1)</sup> P <sub>EUT</sub> : EUT output power       2 <sup>2)</sup> P <sub>AC</sub> : Real power flow at S1 in Figure 1. Positive means power from EUT to utility. Nominal is the 0 % test condition value. <sup>3)</sup> Q <sub>AC</sub> : Reactive power flow at S1 in Figure 1. Positive means power from EUT to utility. Nominal is the 0 % test condition value. <sup>4)</sup> Fundamental of I <sub>AC</sub> when RLC is adjusted. <sup>5)</sup> BL: Balance condition, IB: Imbalance condition.         Condition B:         EUT output power PEUT = 50 % - 66 % of maximum         EUT input voltage <sup>5)</sup> = 50 % of rated input voltage range, ±10 % <sup>6)</sup> Based on EUT rated input operating range. For example, If range is between X volts and Y volts, 50 % of range = X + 0,5 × (Y - X). Y shall not exceed 0,8 × EUT maximum system voltage (i.e., maximum allowable array open circuit voltage). In any case, the EUT should not be operated outside of its allowable input voltage range. |                                                                  |                                                                                                                                     |              |           |         |                 |                       |        |              |
|                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | n performed on<br>1,since it is sam                              |                                                                                                                                     |              |           |         |                 |                       | KTL-L1 | and          |
| The t                                                                                                                                                                                              | est result we                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | re refer to origination                                          | al test repo                                                                                                                        | rt (with rep | ort No. F | VUK1912 | 17N030          | )-R1) iss             | ued by | y Bureau     |








| Test result: SUN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2000-3  |                                             | <b>A 1.2.4 Loss of mains protection according BS EN 62116</b><br>The requirement is specified in section 10.2, test procedure in Annex A.1.2.4<br>Load imbalance (real, reactive load) for test condition A (EUT output = 25 % - 33 %) |                                                    |                                      |                        |                         |       |      |                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|--------------------------------------|------------------------|-------------------------|-------|------|-----------------------|
| Test result: SUN2000-3.68KTL-L1         Frequency: 50+/-0,1Hz         UN=230+/-3Vac         Distortion factor of chokes < 2%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |                                             |                                                                                                                                                                                                                                        |                                                    |                                      |                        |                         |       |      |                       |
| Disconnection I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | imit    |                                             |                                                                                                                                                                                                                                        |                                                    |                                      | 0,5s                   |                         |       |      |                       |
| No (% of EUT rating)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (% c    | tive load<br>of Q∟ in<br>I.d) <sup>1)</sup> | P <sub>AC</sub> <sup>2)</sup><br>(% of<br>nominal)                                                                                                                                                                                     | Q <sub>AC</sub> <sup>3)</sup><br>(% of<br>nominal) | I <sub>AC</sub> <sup>4)</sup><br>[A] | Run on<br>Time<br>(ms) | Р <sub>ЕUT</sub><br>(W) | Qf    | VDC  | Remarks <sup>5)</sup> |
| 22 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         | 33                                          | 0                                                                                                                                                                                                                                      | -5                                                 |                                      | 284                    | 1214                    | 0,975 | 130  | Test C at IB          |
| 23 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         | 33                                          | 0                                                                                                                                                                                                                                      | -4                                                 |                                      | 309                    | 1214                    | 0,980 | 130  | Test C at IB          |
| 24 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         | 33                                          | 0                                                                                                                                                                                                                                      | -3                                                 |                                      | 288                    | 1214                    | 0,985 | 130  | Test C at IB          |
| 25 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         | 33                                          | 0                                                                                                                                                                                                                                      | -2                                                 |                                      | 294                    | 1214                    | 0,990 | 130  | Test C at IB          |
| 26 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         | 33                                          | 0                                                                                                                                                                                                                                      | -1                                                 |                                      | 367                    | 1214                    | 0,995 | 130  | Test C at IB          |
| 3 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         | 33                                          | 0                                                                                                                                                                                                                                      | 0                                                  | 0,138                                | 348                    | 1214                    | 1,000 | 130  | Test C at BL          |
| 27 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         | 33                                          | 0                                                                                                                                                                                                                                      | 1                                                  |                                      | 342                    | 1214                    | 1,005 | 130  | Test C at IB          |
| 28 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         | 33                                          | 0                                                                                                                                                                                                                                      | 2                                                  |                                      | 335                    | 1214                    | 1,010 | 130  | Test C at IB          |
| 29 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         | 33                                          | 0                                                                                                                                                                                                                                      | 3                                                  |                                      | 288                    | 1214                    | 1,015 | 130  | Test C at IB          |
| 30 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         | 33                                          | 0                                                                                                                                                                                                                                      | 4                                                  |                                      | 300                    | 1214                    | 1,020 | 130  | Test C at IB          |
| 31 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         | 33                                          | 0                                                                                                                                                                                                                                      | 5                                                  |                                      | 297                    | 1214                    | 1,025 | 130  | Test C at IB          |
| Paramete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | r at 0% | ,                                           | L= 13                                                                                                                                                                                                                                  | 38,70 mH                                           |                                      | R= 43,5                | 57 Ω                    |       | C= 7 | 73,05 μF              |
| Indicate additiona<br>(Disconnection de                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |                                             |                                                                                                                                                                                                                                        | n above res                                        | ults.                                |                        |                         |       |      | 20ms                  |
| <ul> <li>Note:</li> <li>RLC is adjusted to min. +/-1% of the inverter rated output power</li> <li><sup>1)</sup> P<sub>EUT</sub>: EUT output power</li> <li><sup>2)</sup> P<sub>AC</sub>: Real power flow at S1 in Figure 1. Positive means power from EUT to utility. Nominal is the 0% test condition value.</li> <li><sup>3)</sup> Q<sub>AC</sub>: Reactive power flow at S1 in Figure 1. Positive means power from EUT to utility. Nominal is the 0% test condition value.</li> <li><sup>4)</sup> Fundamental of I<sub>AC</sub> when RLC is adjusted.</li> <li><sup>5)</sup> BL: Balance condition, IB: Imbalance condition. Condition C:</li> <li>EUT output power PEUT = 25% - 33% <sup>5)</sup> of maximum</li> <li>EUT input voltage <sup>6)</sup> = &lt;10% of rated input voltage range</li> <li><sup>6)</sup> Or minimum allowable EUT output level if greater than 33%.</li> <li><sup>7)</sup> Based on EUT rated input operating range. For example, If range is between X volts and Y volts, 10% of range = X + 0,1 × (Y - X). Y shall not exceed 0,8 × EUT maximum system voltage (i.e., maximum allowable array open circuit voltage). In any case, the EUT should not be operated outside of its allowable input voltage range.</li> <li>The tests had been performed on the SUN2000-3.68KTL-L1 are valid for the SUN2000-2KTL-L1 and</li> </ul> |         |                                             |                                                                                                                                                                                                                                        |                                                    |                                      |                        |                         |       |      |                       |







| A 1.2.5/A 2.2.5 Reconnect<br>The test procedure in Annex                                                                                                                                     | ıs). P                          |          |                                 |                                         |                      |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------|---------------------------------|-----------------------------------------|----------------------|--|--|--|
|                                                                                                                                                                                              | Test result: SUN2000-3.68KTL-L1 |          |                                 |                                         |                      |  |  |  |
| Test should prove that the root voltage and frequency to                                                                                                                                     |                                 |          |                                 | um delay of 20 secor                    | nds for restoration  |  |  |  |
| of voltage and frequency to                                                                                                                                                                  |                                 |          | ge(188,0V)                      |                                         |                      |  |  |  |
| Time dela                                                                                                                                                                                    |                                 |          | .90(100,01)                     | Measured delay                          | ,                    |  |  |  |
| 60                                                                                                                                                                                           |                                 |          |                                 | 76,1s                                   |                      |  |  |  |
|                                                                                                                                                                                              | -                               | Volta    | ge(258,2V)                      | 70,13                                   |                      |  |  |  |
| Time dela                                                                                                                                                                                    |                                 | vona     | Je(200,2 v)                     | Measured delay                          | ,                    |  |  |  |
|                                                                                                                                                                                              |                                 |          |                                 | 76,6s                                   |                      |  |  |  |
| 60s 76,6s                                                                                                                                                                                    |                                 |          |                                 |                                         |                      |  |  |  |
|                                                                                                                                                                                              | Linder                          | <b>F</b> |                                 |                                         |                      |  |  |  |
|                                                                                                                                                                                              |                                 | Freque   | ency(47,6Hz)                    |                                         |                      |  |  |  |
| Time dela                                                                                                                                                                                    |                                 |          |                                 | Measured delay                          | 1                    |  |  |  |
| 60                                                                                                                                                                                           |                                 |          |                                 | 76,4s                                   |                      |  |  |  |
|                                                                                                                                                                                              |                                 | reque    | ncy(51,9Hz)                     |                                         |                      |  |  |  |
| Time dela                                                                                                                                                                                    | y setting                       |          |                                 | Measured delay                          | 1                    |  |  |  |
| 60                                                                                                                                                                                           | s                               |          |                                 | 76,3s                                   |                      |  |  |  |
|                                                                                                                                                                                              |                                 |          |                                 |                                         |                      |  |  |  |
|                                                                                                                                                                                              | Checks on no reco               | nnectio  | on when voltag<br>stage 1 limit | e or frequency is brou<br>s of table 1. | ught to just outside |  |  |  |
|                                                                                                                                                                                              | At 266,2V                       | ŀ        | At 180,0V                       | At 47,4Hz                               | At 52,1Hz            |  |  |  |
| Confirmation that the unit<br>does not re-connect.No reconnectionNo reconnectionNo reconnection                                                                                              |                                 |          |                                 |                                         |                      |  |  |  |
| Note:<br>The tests had been performed on the SUN2000-3.68KTL-L1 are valid for the SUN2000-2KTL-L1 and<br>SUN2000-3KTL-L1,since it is same as in hardware and just power derated by software. |                                 |          |                                 |                                         |                      |  |  |  |



| A 1.2.6/A 2.2.6 Freque | ncy Drift and Sten | change Stability test |  |
|------------------------|--------------------|-----------------------|--|
| A 1.2.0/A 2.2.0 110400 | ncy Drift and Step | Change Stability test |  |

The requirement is specified in section 11.3, test procedure in Annex A.1.2.6 (Inverter connected) or Annex A2 A.2.2.6 (Synchronous).

Ρ

| Test result: SUN2000-3.68KTL-L1 |                    |             |           |                 |  |  |  |
|---------------------------------|--------------------|-------------|-----------|-----------------|--|--|--|
|                                 | Start<br>Frequency | Change      | Test time | Confirm no trip |  |  |  |
| Positive Vector Shift           | 49,0Hz             | +50 degrees |           | No trip         |  |  |  |
| Negative Vector Shift           | 50,0Hz             | -50 degrees |           | No trip         |  |  |  |
| Positive Frequency drift        | 49,0Hz - 51,0Hz    | +0,95Hz/sec | 2,1s      | No trip         |  |  |  |
| Negative Frequency drift        | 51,0Hz - 49,0Hz    | -0,95Hz/sec | 2,1s      | No trip         |  |  |  |

#### Note:

Manufacturers considering new designs should allow for the RoCoF where stability is required to be increased to, up to 2Hz per second, as proposed in the new European network codes, which are expected to come into force over the period 2014/2015. Under these conditions RoCoF will cease to be an effective loss of mains protection and is unlikely to be permitted in future revisions of this document.

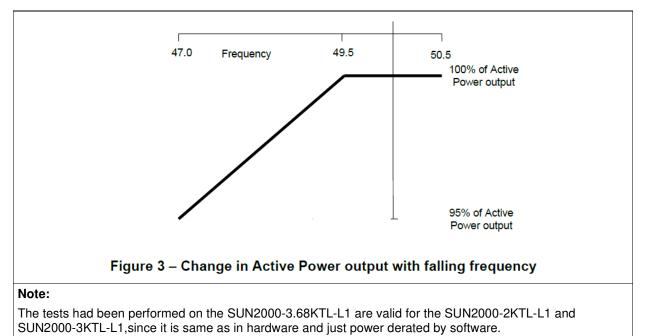
For the step change test the unit should be operated with a measurable output at the start frequency and then a vector shift should be applied by extending or reducing the time of a single cycle with subsequent cycles returning to the start frequency. The start frequency should then be maintained for a period of at least 10 seconds to complete the test. The unit should not trip during this test.

For frequency drift tests the unit should be operated with a measurable output at the start frequency and then the frequency changed in a ramp function at 0,95Hz per second to the end frequency. On reaching the end frequency it should be maintained for a period of at least10 seconds. The unit should not trip during this test.

The tests had been performed on the SUN2000-3.68KTL-L1 are valid for the SUN2000-2KTL-L1 and SUN2000-3KTL-L1, since it is same as in hardware and just power derated by software.

The test result were refer to original test report (with report No. PVUK191217N030-R1) issued by Bureau Veritas Shenzhen Co., Ltd. Dongguan Branch, dated on 2020-09-16.




| Test result: SUN2000-3.68                                                             | BKTL-L1                                          |                              |                        |
|---------------------------------------------------------------------------------------|--------------------------------------------------|------------------------------|------------------------|
|                                                                                       |                                                  | Switch to:                   |                        |
| 5-min mean value (each)                                                               | a) 50 ± 0,01 [Hz]                                | b) - 0,4 to – 0,5 [Hz]       | c) - 2,4 to - 2,5 [Hz] |
| Frequency [Hz]:                                                                       | 50,00                                            | 49,50                        | 47,55                  |
| Active power [W]:                                                                     | 3673                                             | 3672                         | 3672                   |
| ∆ P/P <sub>max</sub> [%]:                                                             |                                                  |                              | 0,22                   |
| Graph of frequency a) to                                                              | b) to c):                                        |                              |                        |
| 51.00                                                                                 |                                                  |                              | 4000                   |
| 50.50                                                                                 |                                                  |                              | 3500                   |
| 50.00                                                                                 |                                                  |                              | 3000                   |
|                                                                                       |                                                  |                              |                        |
| 王 49.50                                                                               |                                                  |                              | 2500 ≥                 |
| 49.00                                                                                 |                                                  |                              | 2000 è                 |
| H       49.50         Journal       49.00         H       49.00         H       48.50 |                                                  |                              | 1500 ဋ                 |
| 48.00                                                                                 |                                                  |                              | 1000                   |
| 47.50                                                                                 |                                                  |                              | - 500                  |
|                                                                                       |                                                  |                              |                        |
| 47.00                                                                                 | 00 200 300 400                                   | 500 600 700 80               | 0<br>900 900           |
| 0 1                                                                                   |                                                  |                              | 900                    |
|                                                                                       | 110                                              | ne [s]                       |                        |
|                                                                                       | Er.                                              | eq — P                       |                        |
|                                                                                       |                                                  | cy r                         |                        |
| Test:                                                                                 | 1                                                |                              |                        |
|                                                                                       | must be kept for at least 5 r                    | ninutes.                     |                        |
| For a CHP the test point a)                                                           | at 50,00Hz is taken as Reg                       | gistered capacity (Pmax) due | to limited discrete    |
| operating points of the CHI                                                           | P's thermal process.<br>er reduction take place. |                              |                        |

• the Micro-generator does not disconnect from the network at the operating points a) to c) when the network frequency is changed and

• the Micro-generator does not reduce output energy at point b) and

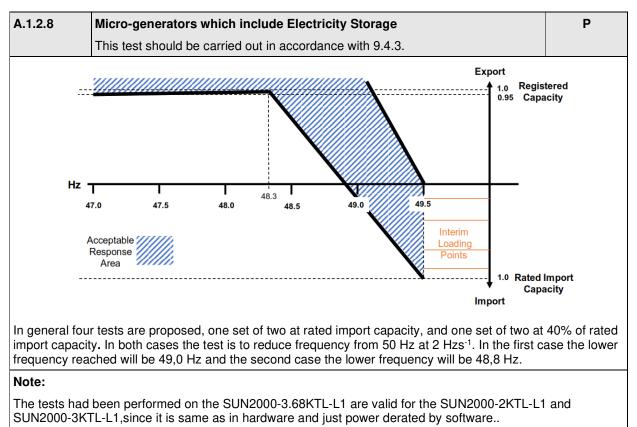
• the power reduction at point c) is less than or equal to the allowed power reduction according to paragraph 9.4.2







| A.1.2.8         | Micro-generators which inc     | clude Electricity Storage                                             |                  | Р                        |  |  |
|-----------------|--------------------------------|-----------------------------------------------------------------------|------------------|--------------------------|--|--|
|                 | This test should be carried of | ut in accordance with 9.4.3.                                          |                  |                          |  |  |
| Test result:    | SUN2000-3.68KTL-L1             |                                                                       |                  |                          |  |  |
|                 |                                | Test                                                                  | 1:               |                          |  |  |
|                 |                                | 100% rated import power, 50,0                                         | 0 Hz to 49,00 Hz | with 2 Hzs <sup>-1</sup> |  |  |
|                 |                                | Start: 50 ± 0,01 Hz                                                   | End: 49,0        | 00 Hz                    |  |  |
| Frequency [H    | lz]:                           | 50,00                                                                 | 49,00            | )                        |  |  |
| Active power    | [W]:                           | -3048                                                                 | -74              |                          |  |  |
| Reactive Pov    | ver [Var]:                     | 8                                                                     | 20               |                          |  |  |
|                 |                                | Test                                                                  | 2:               |                          |  |  |
|                 |                                | 100% rated import power 50,00 Hz to 48,80 Hz with 2 Hzs <sup>-1</sup> |                  |                          |  |  |
|                 |                                | Start: 50 ± 0,01 Hz                                                   | End: 48,8        | 80 Hz                    |  |  |
| Frequency [H    | lz]:                           | 50,00                                                                 | 48,8             |                          |  |  |
| Active power    | [W]:                           | -3050                                                                 | 914              |                          |  |  |
| Reactive Pow    | ver [Var]:                     | 8                                                                     | 19               |                          |  |  |
|                 |                                | Test                                                                  | 3:               |                          |  |  |
|                 |                                | 40% rated import power 50,00                                          | Hz to 49,00 Hz w | rith 2 Hzs⁻¹             |  |  |
|                 |                                | Start: 50 ± 0,01 Hz                                                   | End: 49,0        | )0 Hz                    |  |  |
| Frequency [H    | lz]:                           | 50,00                                                                 | 49,90            | )                        |  |  |
| Active power    | [W]:                           | -1222                                                                 | 1727             | 7                        |  |  |
| Reactive Pow    | ver [Var]:                     | 15                                                                    | 20               |                          |  |  |
|                 |                                | Test                                                                  | 4:               |                          |  |  |
|                 |                                | 40% rated import power 50,00                                          | Hz to 48,80 Hz w | rith 2 Hzs⁻¹             |  |  |
|                 |                                | Start: 50 ± 0,01 Hz                                                   | End: 48,8        | 80 Hz                    |  |  |
| Frequency [Hz]: |                                | 50,00                                                                 | 48,80            |                          |  |  |
| Active power    | [W]:                           | -1222                                                                 | 2708             |                          |  |  |
| Reactive Pow    | ver [Var]:                     | 15                                                                    | 13               |                          |  |  |
| Test:           |                                |                                                                       |                  |                          |  |  |

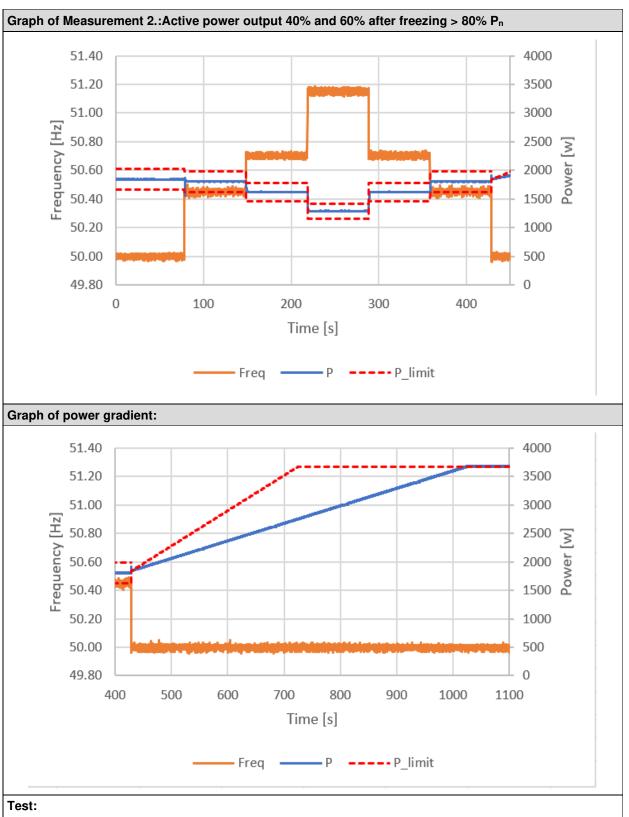

(a) When the frequency falls to 49,5 Hz the automatic response shall start;

(b) The frequency response characteristic shall be within the shaded area of Figure 4;

(c) If the Electricity Storage device is not capable of moving from an import level to an appropriate export level within 20 s of the frequency falling to 49,2 Hz, then it shall cease to import; and

(d) If the Electricity Storage device has not achieved at least zero Active Power import when the frequency has reached 48,9 Hz it shall cease to import immediately.








| A 1.2.9/A 2.2.9 Power re<br>This test should be carrie<br>over- frequency. The test<br>Hz and Droop of 10%.         | d out in acc | ordance with  | EN 50438 /        |                         |                      |                                                      | Ρ         |  |  |
|---------------------------------------------------------------------------------------------------------------------|--------------|---------------|-------------------|-------------------------|----------------------|------------------------------------------------------|-----------|--|--|
| Test result: SUN2000-3.68KTL-L1                                                                                     |              |               |                   |                         |                      |                                                      |           |  |  |
| 1-min mean value [Hz]:                                                                                              | a) 50,00     | b) 50,45      | c) 50,70          | d) 51,15                | e) 50,70             | f) 50,45                                             | g) 50,00  |  |  |
| 1. Measurement a) to g):                                                                                            | Active powe  | er output > 8 | 0% P <sub>n</sub> | T                       | ſ                    | ſ                                                    | T         |  |  |
| Frequency [Hz]:                                                                                                     | 50,00        | 50,45         | 50,70             | 51,15                   | 50,70                | 50,45                                                | 50,00     |  |  |
| P <sub>expected</sub> [W]:                                                                                          | N/A          | 3643          | 3467              | 3135                    | 3467                 | 3643                                                 | N/A       |  |  |
| P <sub>measured</sub> [W]:                                                                                          | 3670         | 3633          | 3448              | 3118                    | 3448                 | 3632                                                 | 3670      |  |  |
| ΔP <sub><i>E</i>60</sub> /P <sub>M</sub> [%]:                                                                       | N/A          | -0,26         | -0,50             | -0,45                   | -0,50                | -0,29                                                | N/A       |  |  |
| 2. Measurement a) to g):                                                                                            | Active powe  | er output 40% | % and 60% a       | fter freezing           | > 80% P <sub>n</sub> |                                                      | I         |  |  |
| Frequency [Hz]:                                                                                                     | 50,00        | 50,45         | 50,70             | 51,15                   | 50,70                | 50,45                                                | 50,00     |  |  |
| Pexpected [W]:                                                                                                      | N/A          | 1803          | 1619              | 1288                    | 1619                 | 1803                                                 | N/A       |  |  |
| P <sub>measured</sub> [W]:                                                                                          | 1840         | 1805          | 1620              | 1288                    | 1620                 | 1804                                                 | 3680      |  |  |
| ΔΡ <sub><i>E</i>60</sub> /Ρ <sub>M</sub> [%]:                                                                       | N/A          | 0,05          | 0,03              | 0,00                    | 0,03                 | 0,03                                                 | N/A       |  |  |
| Active Power Gradient                                                                                               | N/A          | N/A           | N/A               | N/A                     | N/A                  | N/A                                                  | 5,04%/Pn  |  |  |
| Limit ∆P/P <sub>1min</sub> :                                                                                        |              |               |                   | ±10 % of P <sub>№</sub> | I                    |                                                      |           |  |  |
| Graph of Measurement<br>51.60<br>51.40<br>51.20<br>51.00<br>50.80<br>50.60<br>50.40<br>50.20<br>50.00<br>49.80<br>0 | 1.: Active p | Power output  |                   | 000<br>P_li             | 800                  | 4500<br>4000<br>3500<br>2500<br>2000<br>1500<br>1000 | Power [W] |  |  |

No. 96, Guantai Road (Houjie Section), Houjie Town, Dongguan City, Guangdong Province, 523942, People's Republic of China Page 61 of 93





With regard to the Limited Frequency Sensitive Mode — Overfrequency (LFSMO), the Micro-generator shall be capable of reducing its Active Power output when the frequency rises above 50,4 Hz. The Droop shall be

Bureau Veritas Shenzhen Co., Ltd. Dongguan Branch No. 96, Guantai Road (Houjie Section), Houjie Town, Dongguan City, Guangdong Province, 523942, People's Republic of China Page 62 of 93



10%. No intentional delay should be programmed to ensure that the initial delay is as short as possible with a maximum of 2 s.

The Micro-generator shall continue to reduce its Active Power output with rising frequency with a Droop of 10% until 52,0 Hz, at which point the Micro-generator should disconnect.

If the reduction in Active Power output is such that the Micro-generator reaches its minimum stable operating level, it shall continue to operate stably at this level.

#### Assessment criterion:

The Droop should be determined from the measurements between 50,4 Hz and 51,15 Hz. The allowed tolerance for the frequency measurement shall be  $\pm$  0,05 Hz. The allowed tolerance for Active Power output measurement shall be  $\pm$ 10% of the required change in Active Power. The resulting overall tolerance range for a nominal 10% Droop is +2,8% and – 1,5%, ie a Droop less than 12,8% and greater than 8,5%.

#### Note:

The test was performed without default delay setting 0s. A delay can be set from 0s - 60s (in 0,001s steps). The tests had been performed on the SUN2000-3.68KTL-L1 are valid for the SUN2000-2KTL-L1 and SUN2000-3KTL-L1, since it is same as in hardware and just power derated by software..



|                   | 3.1 Harmonic Cu<br>uirements are spe<br>chronous). |                                |                                   | er connected) or               | Annex A2                                  | Р                                                    |
|-------------------|----------------------------------------------------|--------------------------------|-----------------------------------|--------------------------------|-------------------------------------------|------------------------------------------------------|
| Test result:      | SUN2000-2KTL                                       | -L1                            |                                   |                                |                                           |                                                      |
| Generati          | ng Unit rating per                                 | · phase (rpp)                  | 21                                | ŚW                             |                                           |                                                      |
|                   |                                                    | f rated ouput                  |                                   | ated output                    | Harm                                      | ionic %                                              |
| Harmonic<br>order | Measured<br>Value (MV) in<br>Amps                  | Measured<br>Value (MV) in<br>% | Measured<br>Value (MV) in<br>Amps | Measured<br>Value (MV) in<br>% | Limit in BS<br>EN61000-<br>3-2 in<br>Amps | Higher limit<br>for odd<br>harmonics 21<br>and above |
| 2nd               | 0,007                                              | 0,150                          | 0,011                             | 0,131                          | 1,080                                     |                                                      |
| 3rd               | 0,031                                              | 0,665                          | 0,029                             | 0,344                          | 2,300                                     |                                                      |
| 4th               | 0,007                                              | 0,150                          | 0,009                             | 0,107                          | 0,430                                     |                                                      |
| 5th               | 0,035                                              | 0,751                          | 0,013                             | 0,154                          | 1,140                                     |                                                      |
| 6th               | 0,012                                              | 0,258                          | 0,015                             | 0,178                          | 0,300                                     |                                                      |
| 7th               | 0,028                                              | 0,601                          | 0,019                             | 0,226                          | 0,770                                     |                                                      |
| 8th               | 0,009                                              | 0,193                          | 0,012                             | 0,143                          | 0,230                                     |                                                      |
| 9th               | 0,013                                              | 0,279                          | 0,017                             | 0,202                          | 0,400                                     |                                                      |
| 10th              | 0,009                                              | 0,193                          | 0,009                             | 0,107                          | 0,184                                     |                                                      |
| 11th              | 0,021                                              | 0,451                          | 0,012                             | 0,143                          | 0,330                                     |                                                      |
| 12th              | 0,007                                              | 0,150                          | 0,011                             | 0,131                          | 0,153                                     |                                                      |
| 13th              | 0,031                                              | 0,665                          | 0,017                             | 0,202                          | 0,210                                     |                                                      |
| 14th              | 0,009                                              | 0,193                          | 0,010                             | 0,119                          | 0,131                                     |                                                      |
| 15th              | 0,030                                              | 0,644                          | 0,018                             | 0,214                          | 0,150                                     |                                                      |
| 16th              | 0,008                                              | 0,172                          | 0,007                             | 0,083                          | 0,115                                     |                                                      |
| 17th              | 0,020                                              | 0,429                          | 0,019                             | 0,226                          | 0,132                                     |                                                      |
| 18th              | 0,009                                              | 0,193                          | 0,008                             | 0,095                          | 0,102                                     |                                                      |
| 19th              | 0,015                                              | 0,322                          | 0,020                             | 0,238                          | 0,118                                     |                                                      |
| 20th              | 0,008                                              | 0,172                          | 0,007                             | 0,083                          | 0,092                                     |                                                      |
| 21th              | 0,013                                              | 0,279                          | 0,016                             | 0,190                          | 0,107                                     | 0,160                                                |
| 22th              | 0,007                                              | 0,150                          | 0,011                             | 0,131                          | 0,084                                     |                                                      |
| 23th              | 0,014                                              | 0,300                          | 0,016                             | 0,190                          | 0,098                                     | 0,147                                                |
| 24th              | 0,007                                              | 0,150                          | 0,009                             | 0,107                          | 0,077                                     |                                                      |
| 25th              | 0,013                                              | 0,279                          | 0,014                             | 0,166                          | 0,090                                     | 0,135                                                |
| 26th              | 0,008                                              | 0,172                          | 0,010                             | 0,119                          | 0,071                                     |                                                      |
| 27th              | 0,010                                              | 0,215                          | 0,012                             | 0,143                          | 0,083                                     | 0,124                                                |
| 28th              | 0,008                                              | 0,172                          | 0,009                             | 0,107                          | 0,066                                     |                                                      |
| 29th              | 0,008                                              | 0,172                          | 0,009                             | 0,107                          | 0,078                                     | 0,117                                                |

No. 96, Guantai Road (Houjie Section), Houjie Town, Dongguan City, Guangdong Province, 523942, People's Republic of China Page 64 of 93 Tel: +86 769 8998 2098 Fax: +86 769 8599 1080 Email: <u>customerservice.dg</u>@bureauveritas.com



#### Report No.: PVGB2310WDG0087-1

| 0,007 | 0.450                                                                |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-------|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| - ,   | 0,150                                                                | 0,008                                                                                                                                                                                                                                                               | 0,095                                                                                                                                                                                                                                                                                                                                                                                             | 0,061                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0,008 | 0,172                                                                | 0,010                                                                                                                                                                                                                                                               | 0,119                                                                                                                                                                                                                                                                                                                                                                                             | 0,073                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0,109                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0,007 | 0,150                                                                | 0,007                                                                                                                                                                                                                                                               | 0,083                                                                                                                                                                                                                                                                                                                                                                                             | 0,058                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0,009 | 0,193                                                                | 0,012                                                                                                                                                                                                                                                               | 0,143                                                                                                                                                                                                                                                                                                                                                                                             | 0,068                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0,102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0,007 | 0,150                                                                | 0,006                                                                                                                                                                                                                                                               | 0,071                                                                                                                                                                                                                                                                                                                                                                                             | 0,054                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0,010 | 0,215                                                                | 0,013                                                                                                                                                                                                                                                               | 0,154                                                                                                                                                                                                                                                                                                                                                                                             | 0,064                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0,096                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0,008 | 0,172                                                                | 0,007                                                                                                                                                                                                                                                               | 0,083                                                                                                                                                                                                                                                                                                                                                                                             | 0,051                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0,012 | 0,258                                                                | 0,014                                                                                                                                                                                                                                                               | 0,166                                                                                                                                                                                                                                                                                                                                                                                             | 0,061                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0,091                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0,008 | 0,172                                                                | 0,008                                                                                                                                                                                                                                                               | 0,095                                                                                                                                                                                                                                                                                                                                                                                             | 0,048                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0,014 | 0,300                                                                | 0,013                                                                                                                                                                                                                                                               | 0,154                                                                                                                                                                                                                                                                                                                                                                                             | 0,058                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0,087                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0,009 | 0,193                                                                | 0,009                                                                                                                                                                                                                                                               | 0,107                                                                                                                                                                                                                                                                                                                                                                                             | 0,046                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|       | 0,007<br>0,009<br>0,007<br>0,010<br>0,008<br>0,012<br>0,008<br>0,014 | 0,007         0,150           0,009         0,193           0,007         0,150           0,007         0,150           0,010         0,215           0,008         0,172           0,012         0,258           0,008         0,172           0,014         0,300 | 0,007         0,150         0,007           0,009         0,193         0,012           0,007         0,150         0,006           0,007         0,150         0,006           0,010         0,215         0,013           0,008         0,172         0,007           0,012         0,258         0,014           0,008         0,172         0,008           0,014         0,300         0,013 | 0,007         0,150         0,007         0,083           0,009         0,193         0,012         0,143           0,007         0,150         0,006         0,071           0,010         0,215         0,013         0,154           0,008         0,172         0,007         0,083           0,012         0,258         0,014         0,166           0,008         0,172         0,008         0,095           0,014         0,300         0,013         0,154 | 0,007         0,150         0,007         0,083         0,058           0,009         0,193         0,012         0,143         0,068           0,007         0,150         0,006         0,071         0,054           0,007         0,150         0,006         0,071         0,054           0,010         0,215         0,013         0,154         0,064           0,008         0,172         0,007         0,083         0,051           0,012         0,258         0,014         0,166         0,061           0,008         0,172         0,008         0,095         0,048           0,014         0,300         0,013         0,154         0,058 |

#### Note:

The normal current is 8,70A.

The higher limits for odd harmonics 21 and above are only allowable under certain conditions, if these higher limits are utilised please state the exemption used as detailed in part 6.2.3.4 of BS EN 61000-3-2 in the box below.

The test result were refer to original test report (with report No. PVUK191217N030-R1) issued by Bureau Veritas Shenzhen Co., Ltd. Dongguan Branch, dated on 2020-09-16.



A 1.3.1/A 2.3.1 Harmonic Current Emissions The test requirements are specified in Annex A1 A.1.3.1 (Inverter connected) or Annex A2 A.2.3.1 (Synchronous).

Ρ

| Test result: SUN2000-3KTL-L1 |                                   |                                |                                   |                                |                                           |                                                      |  |
|------------------------------|-----------------------------------|--------------------------------|-----------------------------------|--------------------------------|-------------------------------------------|------------------------------------------------------|--|
| Generati                     | ng Unit rating per                | phase (rpp)                    | 3                                 | W                              |                                           |                                                      |  |
|                              | At 45-55% o<br>1,5                | •                              |                                   | ated output                    | Harm                                      | nonic %                                              |  |
| Harmonic<br>order            | Measured<br>Value (MV) in<br>Amps | Measured<br>Value (MV) in<br>% | Measured<br>Value (MV) in<br>Amps | Measured<br>Value (MV) in<br>% | Limit in BS<br>EN61000-<br>3-2 in<br>Amps | Higher limit<br>for odd<br>harmonics 21<br>and above |  |
| 2nd                          | 0,013                             | 0,191                          | 0,010                             | 0,075                          | 1,080                                     |                                                      |  |
| 3rd                          | 0,064                             | 0,942                          | 0,046                             | 0,346                          | 2,300                                     |                                                      |  |
| 4th                          | 0,004                             | 0,059                          | 0,012                             | 0,090                          | 0,430                                     |                                                      |  |
| 5th                          | 0,047                             | 0,692                          | 0,016                             | 0,120                          | 1,140                                     |                                                      |  |
| 6th                          | 0,006                             | 0,088                          | 0,011                             | 0,083                          | 0,300                                     |                                                      |  |
| 7th                          | 0,038                             | 0,559                          | 0,013                             | 0,098                          | 0,770                                     |                                                      |  |
| 8th                          | 0,003                             | 0,044                          | 0,009                             | 0,068                          | 0,230                                     |                                                      |  |
| 9th                          | 0,031                             | 0,456                          | 0,020                             | 0,150                          | 0,400                                     |                                                      |  |
| 10th                         | 0,006                             | 0,088                          | 0,007                             | 0,053                          | 0,184                                     |                                                      |  |
| 11th                         | 0,029                             | 0,427                          | 0,015                             | 0,113                          | 0,330                                     |                                                      |  |
| 12th                         | 0,003                             | 0,044                          | 0,008                             | 0,060                          | 0,153                                     |                                                      |  |
| 13th                         | 0,024                             | 0,353                          | 0,018                             | 0,135                          | 0,210                                     |                                                      |  |
| 14th                         | 0,003                             | 0,044                          | 0,008                             | 0,060                          | 0,131                                     |                                                      |  |
| 15th                         | 0,020                             | 0,294                          | 0,017                             | 0,128                          | 0,150                                     |                                                      |  |
| 16th                         | 0,003                             | 0,044                          | 0,008                             | 0,060                          | 0,115                                     |                                                      |  |
| 17th                         | 0,021                             | 0,309                          | 0,017                             | 0,128                          | 0,132                                     |                                                      |  |
| 18th                         | 0,003                             | 0,044                          | 0,008                             | 0,060                          | 0,102                                     |                                                      |  |
| 19th                         | 0,020                             | 0,294                          | 0,018                             | 0,135                          | 0,118                                     |                                                      |  |
| 20th                         | 0,003                             | 0,044                          | 0,007                             | 0,053                          | 0,092                                     |                                                      |  |
| 21th                         | 0,016                             | 0,235                          | 0,019                             | 0,143                          | 0,107                                     |                                                      |  |
| 22th                         | 0,004                             | 0,059                          | 0,007                             | 0,053                          | 0,084                                     | 0,160                                                |  |
| 23th                         | 0,019                             | 0,280                          | 0,020                             | 0,150                          | 0,098                                     |                                                      |  |
| 24th                         | 0,003                             | 0,044                          | 0,007                             | 0,053                          | 0,077                                     | 0,147                                                |  |
| 25th                         | 0,022                             | 0,324                          | 0,019                             | 0,143                          | 0,090                                     |                                                      |  |
| 26th                         | 0,004                             | 0,059                          | 0,007                             | 0,053                          | 0,071                                     | 0,135                                                |  |
| 27th                         | 0,020                             | 0,294                          | 0,021                             | 0,158                          | 0,083                                     |                                                      |  |
| 28th                         | 0,004                             | 0,059                          | 0,007                             | 0,053                          | 0,066                                     | 0,124                                                |  |
| 29th                         | 0,019                             | 0,280                          | 0,016                             | 0,120                          | 0,078                                     |                                                      |  |
| 30th                         | 0,003                             | 0,044                          | 0,007                             | 0,053                          | 0,061                                     | 0,117                                                |  |

Bureau Veritas Shenzhen Co., Ltd. Dongguan Branch

No. 96, Guantai Road (Houjie Section), Houjie Town, Dongguan City, Guangdong Province, 523942, People's Republic of China

Tel: +86 769 8998 2098 Fax: +86 769 8599 1080 Email: <u>customerservice.dq</u>@bureauveritas.com TRF No. G98/1 VER.2

Page 66 of 93



Report No.: PVGB2310WDG0087-1

| Totti | 0,000 | 0,044 | 0,007 | 0,000 | 0,010 |       |
|-------|-------|-------|-------|-------|-------|-------|
| 40th  | 0,003 | 0,044 | 0,007 | 0,053 | 0,046 | 0,087 |
| 39th  | 0,006 | 0,088 | 0,013 | 0,098 | 0,058 |       |
| 38th  | 0,003 | 0,044 | 0,007 | 0,053 | 0,048 | 0,091 |
| 37th  | 0,009 | 0,132 | 0,015 | 0,113 | 0,061 |       |
| 36th  | 0,003 | 0,044 | 0,007 | 0,053 | 0,051 | 0,096 |
| 35th  | 0,011 | 0,162 | 0,015 | 0,113 | 0,064 |       |
| 34th  | 0,003 | 0,044 | 0,008 | 0,060 | 0,054 | 0,102 |
| 33th  | 0,014 | 0,206 | 0,017 | 0,128 | 0,068 |       |
| 32th  | 0,003 | 0,044 | 0,007 | 0,053 | 0,058 | 0,109 |
| 31th  | 0,017 | 0,250 | 0,015 | 0,113 | 0,073 |       |

#### Note:

The normal current is 13,0A.

The higher limits for odd harmonics 21 and above are only allowable under certain conditions, if these higher limits are utilised please state the exemption used as detailed in part 6.2.3.4 of BS EN 61000-3-2 in the box below.

The test result were refer to original test report (with report No. PVUK191217N030-R1) issued by Bureau Veritas Shenzhen Co., Ltd. Dongguan Branch, dated on 2020-09-16.



A 1.3.1/A 2.3.1 Harmonic Current Emissions The test requirements are specified in Annex A1 A.1.3.1 (Inverter connected) or Annex A2 A.2.3.1 (Synchronous).

Ρ

| Test result: SUN2000-3.68KTL-L1 |                                   |                                |                                   |                                |                                           |                                                      |  |
|---------------------------------|-----------------------------------|--------------------------------|-----------------------------------|--------------------------------|-------------------------------------------|------------------------------------------------------|--|
| Generati                        | ng Unit rating per                | phase (rpp)                    | 3,68                              | kW                             |                                           |                                                      |  |
|                                 | At 45-55% o<br>1,84               |                                | 100% of ra<br>3,68                | ated output<br>kW              | Harm                                      | ionic %                                              |  |
| Harmonic<br>order               | Measured<br>Value (MV) in<br>Amps | Measured<br>Value (MV) in<br>% | Measured<br>Value (MV) in<br>Amps | Measured<br>Value (MV) in<br>% | Limit in BS<br>EN61000-<br>3-2 in<br>Amps | Higher limit<br>for odd<br>harmonics 21<br>and above |  |
| 2nd                             | 0,014                             | 0,177                          | 0,033                             | 0,204                          | 1,080                                     |                                                      |  |
| 3rd                             | 0,051                             | 0,645                          | 0,064                             | 0,397                          | 2,300                                     |                                                      |  |
| 4th                             | 0,006                             | 0,076                          | 0,049                             | 0,304                          | 0,430                                     |                                                      |  |
| 5th                             | 0,037                             | 0,468                          | 0,031                             | 0,192                          | 1,140                                     |                                                      |  |
| 6th                             | 0,008                             | 0,101                          | 0,023                             | 0,142                          | 0,300                                     |                                                      |  |
| 7th                             | 0,032                             | 0,405                          | 0,028                             | 0,173                          | 0,770                                     |                                                      |  |
| 8th                             | 0,006                             | 0,076                          | 0,029                             | 0,180                          | 0,230                                     |                                                      |  |
| 9th                             | 0,025                             | 0,316                          | 0,017                             | 0,105                          | 0,400                                     |                                                      |  |
| 10th                            | 0,006                             | 0,076                          | 0,029                             | 0,180                          | 0,184                                     |                                                      |  |
| 11th                            | 0,024                             | 0,304                          | 0,021                             | 0,130                          | 0,330                                     |                                                      |  |
| 12th                            | 0,005                             | 0,063                          | 0,025                             | 0,155                          | 0,153                                     |                                                      |  |
| 13th                            | 0,024                             | 0,304                          | 0,016                             | 0,099                          | 0,210                                     |                                                      |  |
| 14th                            | 0,005                             | 0,063                          | 0,020                             | 0,124                          | 0,131                                     |                                                      |  |
| 15th                            | 0,021                             | 0,266                          | 0,015                             | 0,093                          | 0,150                                     |                                                      |  |
| 16th                            | 0,005                             | 0,063                          | 0,020                             | 0,124                          | 0,115                                     |                                                      |  |
| 17th                            | 0,020                             | 0,253                          | 0,014                             | 0,087                          | 0,132                                     |                                                      |  |
| 18th                            | 0,005                             | 0,063                          | 0,015                             | 0,093                          | 0,102                                     |                                                      |  |
| 19th                            | 0,020                             | 0,253                          | 0,018                             | 0,112                          | 0,118                                     |                                                      |  |
| 20th                            | 0,005                             | 0,063                          | 0,015                             | 0,093                          | 0,092                                     |                                                      |  |
| 21th                            | 0,014                             | 0,177                          | 0,022                             | 0,136                          | 0,107                                     | 0,160                                                |  |
| 22th                            | 0,005                             | 0,063                          | 0,015                             | 0,093                          | 0,084                                     |                                                      |  |
| 23th                            | 0,014                             | 0,177                          | 0,024                             | 0,149                          | 0,098                                     | 0,147                                                |  |
| 24th                            | 0,005                             | 0,063                          | 0,012                             | 0,074                          | 0,077                                     |                                                      |  |
| 25th                            | 0,015                             | 0,190                          | 0,024                             | 0,149                          | 0,090                                     | 0,135                                                |  |
| 26th                            | 0,005                             | 0,063                          | 0,009                             | 0,056                          | 0,071                                     |                                                      |  |
| 27th                            | 0,014                             | 0,177                          | 0,028                             | 0,173                          | 0,083                                     | 0,124                                                |  |
| 28th                            | 0,005                             | 0,063                          | 0,008                             | 0,050                          | 0,066                                     |                                                      |  |
| 29th                            | 0,012                             | 0,152                          | 0,028                             | 0,173                          | 0,078                                     | 0,117                                                |  |
| 30th                            | 0,005                             | 0,063                          | 0,009                             | 0,056                          | 0,061                                     |                                                      |  |

Bureau Veritas Shenzhen Co., Ltd. Dongguan Branch

No. 96, Guantai Road (Houjie Section), Houjie Town, Dongguan City, Guangdong Province, 523942, People's Republic of China

Tel: +86 769 8998 2098 Fax: +86 769 8599 1080 Email: <u>customerservice.dq</u>@bureauveritas.com TRF No. G98/1 VER.2

Page 68 of 93



#### Report No.: PVGB2310WDG0087-1

| Mata | •     | 1     | •     |       |       |       |
|------|-------|-------|-------|-------|-------|-------|
| 40th | 0,006 | 0,076 | 0,013 | 0,081 | 0,046 |       |
| 39th | 0,009 | 0,114 | 0,021 | 0,130 | 0,058 | 0,087 |
| 38th | 0,005 | 0,063 | 0,013 | 0,081 | 0,048 |       |
| 37th | 0,010 | 0,127 | 0,025 | 0,155 | 0,061 | 0,091 |
| 36th | 0,005 | 0,063 | 0,012 | 0,074 | 0,051 |       |
| 35th | 0,010 | 0,127 | 0,026 | 0,161 | 0,064 | 0,096 |
| 34th | 0,005 | 0,063 | 0,011 | 0,068 | 0,054 |       |
| 33th | 0,011 | 0,139 | 0,026 | 0,161 | 0,068 | 0,102 |
| 32th | 0,005 | 0,063 | 0,010 | 0,062 | 0,058 |       |
| 31th | 0,011 | 0,139 | 0,027 | 0,167 | 0,073 | 0,109 |

#### Note:

The normal current is 16,0A.

The higher limits for odd harmonics 21 and above are only allowable under certain conditions, if these higher limits are utilised please state the exemption used as detailed in part 6.2.3.4 of BS EN 61000-3-2 in the box below.

The test result were refer to original test report (with report No. PVUK191217N030-R1) issued by Bureau Veritas Shenzhen Co., Ltd. Dongguan Branch, dated on 2020-09-16.



| A 1.3.2/A 2.3.2 Power factor<br>The requirement is specified in section 9.5, test procedure in Annex A1 A.1.3.2 (Inverter<br>connected) or Annex A2 A.2.3.2 (Synchronous). |               |         |         |                                                        |               |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------|---------|--------------------------------------------------------|---------------|--|--|--|
| Test result: SUN2000-2KTL-L1                                                                                                                                               |               |         |         |                                                        |               |  |  |  |
| Output power                                                                                                                                                               | 216,2 V       | 230,0 V | 253,2 V |                                                        |               |  |  |  |
| 20%                                                                                                                                                                        | 0,9998i       | 0,9999i | 0,9999i | Measured at                                            | three voltage |  |  |  |
| 50%                                                                                                                                                                        | 0,9999i       | 0,9999i | 0,9999i | levels and at                                          | full output.  |  |  |  |
| 75%                                                                                                                                                                        | 0,9999i       | 0,9999i | 0,9999i | Voltage to be maintained<br>within ±1,5% of the stated |               |  |  |  |
| 100%                                                                                                                                                                       | 0,9999i       | 0,9999i | 0,9999i | level during th                                        | ne test.      |  |  |  |
| Limit                                                                                                                                                                      | >0,95         | >0,95   | >0,95   |                                                        |               |  |  |  |
| Test result: SUN20                                                                                                                                                         | 00-3.68KTL-L1 | •       | •       |                                                        |               |  |  |  |
| Output power                                                                                                                                                               | 216,2 V       | 230,0 V | 253,2 V |                                                        |               |  |  |  |
| 20%                                                                                                                                                                        | 0,9999i       | 0,9999i | 0,9999i | Measured at                                            | three voltage |  |  |  |
| 50%                                                                                                                                                                        | 0,9999i       | 0,9999i | 0,9999i | levels and at                                          | ull output.   |  |  |  |
| 75%                                                                                                                                                                        | 0,9999i       | 0,9999i | 0,9999i | Voltage to be within ±1,5%                             | of the stated |  |  |  |
| 100%                                                                                                                                                                       | 0,9999i       | 0,9999i | 0,9999i | level during th                                        | ne test.      |  |  |  |
| Limit                                                                                                                                                                      | >0,95         | >0,95   | >0,95   |                                                        |               |  |  |  |
| Noto <sup>.</sup>                                                                                                                                                          |               |         |         |                                                        |               |  |  |  |

The power factor capability of the Micro-generator shall conform to EN 50549-1 as applicable to Microgenerating Plant. When operating at Registered Capacity the Micro-generator shall operate at a power factor within the range 0,95 lagging to 0,95 leading relative to the voltage waveform unless otherwise agreed with the DNO eg for power factor improvement.

The test set up shall be such that the Inverter supplies full load to the DNO's Distribution System via the power factor (pf) meter and the variac as shown below in figure A5. The Inverter pf should be within the limits given in 5.6, for three test voltages 230 V -6%, 230V and 230 V +10%. The voltage shall be maintained within  $\pm 1,5\%$  of the stated level during the test.

The tests had been performed on the SUN2000-3.68KTL-L1 and SUN2000-2KTL-L1 are valid for the SUN2000-3KTL-L1, since it is same as in hardware and just power derated by software. The test result were refer to original test report (with report No. PVUK191217N030-R1) issued by Bureau Veritas Shenzhen Co., Ltd. Dongguan Branch, dated on 2020-09-16.



| A 1.3.3/A 2.3.3 Voltage Flicker                                                                                                                          |                  |     |       |                          |                  |     |    | Ρ                        |              |             |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----|-------|--------------------------|------------------|-----|----|--------------------------|--------------|-------------|--|
| Test result: SUN2000-3.68KTL-L1                                                                                                                          |                  |     |       |                          |                  |     |    |                          |              |             |  |
| Test conditions:Maximum permissible voltage fluctuation (expressed as a percentage of nominal<br>voltage at 100 % power) and flicker as per EN 61000-3-3 |                  |     |       |                          |                  |     |    |                          | e of nominal |             |  |
|                                                                                                                                                          | Starting         |     |       |                          | Stopping         |     |    |                          | Running      |             |  |
| Limit                                                                                                                                                    | d <sub>max</sub> | d   | lc    | <b>d</b> (t)             | d <sub>max</sub> | d   | c  | <b>d</b> (t)             | Pst          | Plt 2 hours |  |
| Measured Values at test<br>impedance                                                                                                                     | 1,98             | 1,8 | 87    |                          | 2,01             | 1,8 | 85 |                          | 0,028        | 0,023       |  |
| Normalised to standard<br>impedance                                                                                                                      | 1,98             | 1,8 | 87    |                          | 2,01             | 1,8 | 85 |                          | 0,028        | 0,023       |  |
| Normalised to required<br>maximum impedance                                                                                                              | 1,98             | 1,8 | 87    |                          | 2,01             | 1,8 | 85 |                          | 0,028        | 0,023       |  |
| Limits set under BS EN<br>61000-3-11                                                                                                                     | 4%               | 3,3 | 3%    | 3,3%<br><sup>500ms</sup> | 4%               | 3,3 | 3% | 3,3%<br><sup>500ms</sup> | 1,0          | 0,65        |  |
|                                                                                                                                                          |                  |     |       |                          |                  |     |    |                          |              |             |  |
| Taatimpadanaa                                                                                                                                            | R                | R   |       | 0,4                      | Ω                |     | XI |                          | 0,25         | Ω           |  |
| Test impedance                                                                                                                                           | Z                |     |       | 0,472                    | Ω                |     |    |                          |              |             |  |
| Standard impadance                                                                                                                                       | R                |     | 0,4   |                          | Ω                |     |    | XI                       | 0,25         | Ω           |  |
| Standard impedance                                                                                                                                       | Z                |     | 0,472 |                          | Ω                |     |    |                          |              |             |  |
| Maximum impadance                                                                                                                                        | R                |     | 0,4   |                          | Ω                |     |    | XI                       | 0,25         | Ω           |  |
| Maximum impedance                                                                                                                                        | Zmax             |     | 0,472 |                          | Ω                |     |    |                          |              |             |  |

For voltage change and flicker measurements the following formula is to be used to convert the measured values to the normalised values where the power factor of the generation output is 0,98 or above.

Normalised value = Measured value\*reference source resistance/measured source resistance at test point. Single phase unit reference source resistance is  $0.4\Omega$ 

Two phase units in a three phase system reference source resistance  $0.4\Omega$ 

Two phase units in a split phase system reference source resistance is  $0,24\Omega$ 

Three phase units reference source resistance is  $0,24\Omega$ 

Where the power factor of the output is under 0,98 then the XI to R ratio of the test impedance should be close to that of the Standard impedance.

The stopping test should be a trip from full load operation.

The tests had been performed on the SUN2000-3.68KTL-L1 are valid for the SUN2000-2KTL-L1, SUN2000-3KTL-L1 since it is same as in hardware and just power derated by software.

The test result were refer to original test report (with report No. PVUK191217N030-R1) issued by Bureau Veritas Shenzhen Co., Ltd. Dongguan Branch, dated on 2020-09-16.



| A.1.3.4 DC injection          |         |       |       | Р     |
|-------------------------------|---------|-------|-------|-------|
| Test result:SUN2000-2         | 2KTL-L1 |       |       |       |
| Test level power              | 20%     | 50%   | 75%   | 100%  |
| Recorded value in<br>Amps[mA] | 2       | 2     | 3     | 4     |
| As % of rated AC current      | 0,02    | 0,02  | 0,03  | 0,05  |
| Limit                         | 0,25%   | 0,25% | 0,25% | 0,25% |

The tests should be carried out on a single Generating Unit.

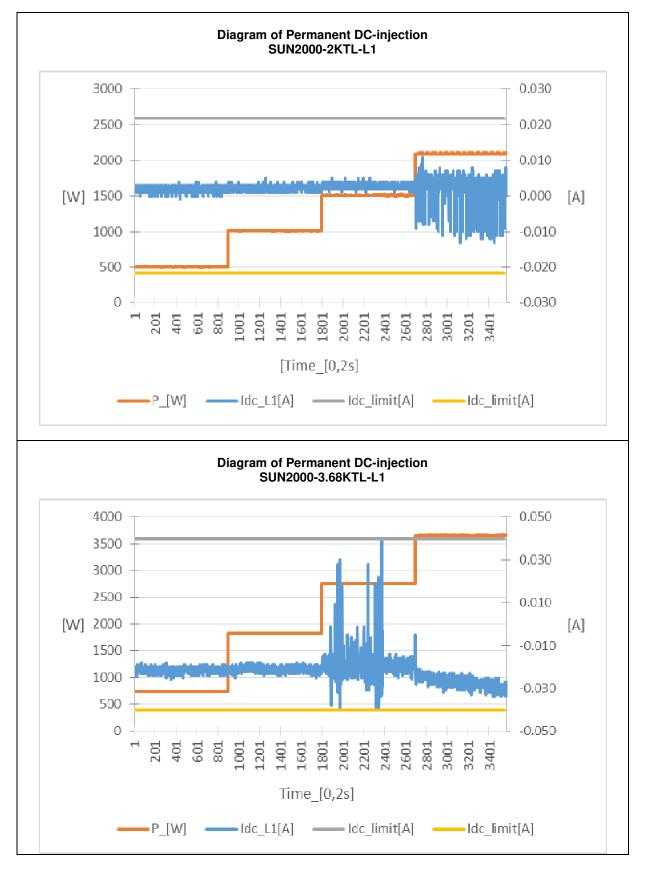
Tests are to be carried out at four defined power levels ±5%. At 230 V a 2kW single phase Inverter has a current output of 8,70 A so DC limit is 21,7 mA. These tests should be undertaken in accordance with Annex A.1.3.4.

The % DC injection ("as % of rated AC current" below) is calculated as follows:

% DC injection = Recorded DC value in Amps / Base current where the base current is the Registered Capacity (W) / V phase. The % DC injection should not be greater than 0,25%.

| Test result:SUN2000-3.68KTL-L1 |       |       |       |       |  |  |  |
|--------------------------------|-------|-------|-------|-------|--|--|--|
| Test level power               | 20%   | 50%   | 75%   | 100%  |  |  |  |
| Recorded value in<br>Amps[mA]  | 22    | 21    | 19    | 27    |  |  |  |
| As % of rated AC<br>current    | 0,14  | 0,13  | 0,12  | 0,17  |  |  |  |
| Limit                          | 0,25% | 0,25% | 0,25% | 0,25% |  |  |  |
| Mata                           |       |       |       |       |  |  |  |

Note:


The tests should be carried out on a single Generating Unit.

Tests are to be carried out at four defined power levels  $\pm 5\%$ . At 230 V a 3,68 kW single phase Inverter has a current output of 16,0 A so DC limit is 40,0 mA. These tests should be undertaken in accordance with Annex A.1.3.4.

The % DC injection ("as % of rated AC current" below) is calculated as follows:

% DC injection = Recorded DC value in Amps / Base current where the base current is the Registered Capacity (W) / V phase. The % DC injection should not be greater than 0,25%.

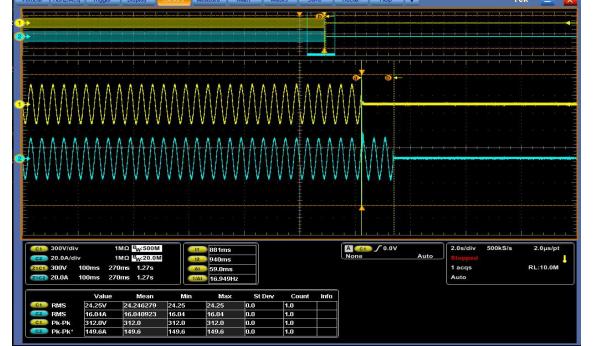




No. 96, Guantai Road (Houjie Section), Houjie Town, Dongguan City, Guangdong Province, 523942, People's Republic of China Page 73 of 93



## Test:


The level of DC injection from the Inverter-connected PV generator in to the DNO's Distribution System shall not exceed the levels specified in 5.5 when measured during operation at three levels, 20%, 50%, 75% and 100% of rating with a tolerance of plus or minus 5%.

The tests had been performed on the SUN2000-3.68KTL-L1 and SUN2000-2KTL-L1 are valid for the SUN2000-3KTL-L1 since it is same as in hardware and just power derated by software.

The test result were refer to original test report (with report No. PVUK191217N030-R1) issued by Bureau Veritas Shenzhen Co., Ltd. Dongguan Branch, dated on 2020-09-16.



| A 1.3.5/A 2.3.4 Short Circuit Current Contribution for Inverters                              |                                                 |  |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------|-------------------------------------------------|--|--|--|--|--|--|--|
| Test result: SUN2000-3.68KTL-L1                                                               | Test result: SUN2000-3.68KTL-L1                 |  |  |  |  |  |  |  |
| For a directly coupl                                                                          | For a directly coupled unit For a Inverter unit |  |  |  |  |  |  |  |
| Parameter Symbol Value Time after fault Volts Amp                                             |                                                 |  |  |  |  |  |  |  |
| Peak Short Circuit current         ip         N/A         20ms         10,29 V         16,39A |                                                 |  |  |  |  |  |  |  |
| Initial Value of aperiodic current A N/A 100ms 6,19V 0,41A                                    |                                                 |  |  |  |  |  |  |  |
| Initial symmetrical short-circuit<br>current* Ik N/A 250ms 6,14V 0,42A                        |                                                 |  |  |  |  |  |  |  |
| Decaying (aperiodic) component of<br>short circuit current* $i_{DC}$ N/A 500ms 6,24V 0,41A    |                                                 |  |  |  |  |  |  |  |
| Reactance/Resistance Ratio of<br>source* $x_{/R}$ N/ATime to trip0,059In seconds              |                                                 |  |  |  |  |  |  |  |
| <b>Testing:</b> Testing procedure: LVRT 10 – 15 % $U_{NOM}$ with > 500 ms shall be recorded   |                                                 |  |  |  |  |  |  |  |
| Vertical Horiz/Acq Trigger Display Oursors Measure Math Masks Save Recal Help 🔽 Tek 📃 🗙       |                                                 |  |  |  |  |  |  |  |



## Note:

The values of voltage and current should be recorded for a period of up to 2 second when the changeover switch should be returned to the normal position. The voltage and current at relevant times shall be recorded in the type test report (Appendix 4) including the time taken for the Inverter to trip.

The tests had been performed on the SUN2000-3.68KTL-L1 are valid for the SUN2000-2KTL-L1, SUN2000-3KTL-L1 since it is same as in hardware and just power derated by software.

The test result were refer to original test report (with report No. PVUK191217N030-R1) issued by Bureau Veritas Shenzhen Co., Ltd. Dongguan Branch, dated on 2020-09-16.



| A1.3.6 Self Monitoring – Solid state Disconnection                                                                                                                                                                                                                                                                    |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| It has been verified that in the event of the solid state switching device failing to disconnect the UNIT, the voltage on the output side of the switching device is reduced to a value below 50 volts within 0,5 seconds.                                                                                            |  |  |  |  |
| <b>Note:</b><br>Unit do not provide solid state switching relays. In case the semiconductor bridge is switched off, then the voltage on the output drops to 0. In this case the relays on the output will also open (4.1 Functional safety of the internal automatic disconnection device according to VDE 0126-1-1). |  |  |  |  |



| yber security, required by paragraph 9.7                                                                                                                                                                     | Ρ   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| onfirm that the Manufacturer or Installer of the Micro-generator has provided a statement escribing how the Micro-generator has been designed to comply with cyber security equirements, as detailed in 9.7. | Yes |
|                                                                                                                                                                                                              |     |
| Huawei Technologies Co., Ltd.                                                                                                                                                                                |     |
| Manufacturer's declaration                                                                                                                                                                                   |     |
| We, ( <u>Company name:</u> <u>Huawei Technologies Co., Ltd., address:</u>                                                                                                                                    |     |
| Administration Building, Headquarters of Huawei Technologies Co., Ltd.,                                                                                                                                      |     |
| Bantian, Longgang District, Shenzhen, 518129, P.R.C), hearby declare that all                                                                                                                                |     |
| our below listed inverters comply with the cyber security requirements of the                                                                                                                                |     |
| standard G99-1 and G98-1:                                                                                                                                                                                    |     |
| - Model no.:                                                                                                                                                                                                 |     |
| For G98-1:                                                                                                                                                                                                   |     |
| SUN2000-2KTL-L1,SUN2000-3KTL-L1,SUN2000-3.68KTL-L1,SUN200                                                                                                                                                    |     |
| 0-3KTL-M1, SUN2000-4KTL-M1, SUN2000-5KTL-M1,                                                                                                                                                                 |     |
| SUN2000-6KTL-M1, SUN2000-8KTL-M1, SUN2000-10KTL-M1                                                                                                                                                           |     |
| SUN2000-3KTL-M0, SUN2000-4KTL-M0, SUN2000-5KTL-M0,                                                                                                                                                           |     |
| SUN2000-6KTL-M0, SUN2000-8KTL-M0, SUN2000-10KTL-M0                                                                                                                                                           |     |
| For G99-1: SUN2000-4KTL-L1, SUN2000-4.6KTL-L1,                                                                                                                                                               |     |
| SUN2000-5KTL-L1, SUN2000-6KTL-L1                                                                                                                                                                             |     |
| <ul> <li>Requirements listed in the standard(s):</li> </ul>                                                                                                                                                  |     |
| - ETSI EN 303 645;                                                                                                                                                                                           |     |
| - relevant aspects of PAS 1879 "Energy smart appliances - Demand                                                                                                                                             |     |
| side response operation – Code of practice";                                                                                                                                                                 |     |
| - relevant aspects of "Distributed Energy Resources - Cyber Security                                                                                                                                         |     |
| Page 1 of 2                                                                                                                                                                                                  |     |



| Connection Guida            | ance" published by BEIS and the ENA;                    |
|-----------------------------|---------------------------------------------------------|
| - Any other releva          | ant standard that has been incorporated in the design o |
| the Power Gener             | rating Module.                                          |
|                             |                                                         |
| Declared by: Chen Dongxia   | ang                                                     |
| Company name: <u>Huawei</u> | Technologies Co., Ltd.,                                 |
| Responsible person: Chen    | Dongxiang                                               |
| Signature (and/or Stamp):   | Chen Dungwong                                           |
| Date: 2023.10.20            |                                                         |
|                             |                                                         |
|                             |                                                         |
|                             |                                                         |
|                             |                                                         |
|                             |                                                         |
|                             |                                                         |
|                             |                                                         |
|                             |                                                         |
|                             |                                                         |
|                             |                                                         |
|                             | Page 2 of 2                                             |

### Note:

Different levels of access, all are password protected, only certain parameters can be changed on maintenance level.

No. 96, Guantai Road (Houjie Section), Houjie Town, Dongguan City, Guangdong Province, 523942, People's Republic of China Page 78 of 93



| Logic Interface (input port)<br>Required by paragraph 9.4.3                                                                                                                                                                                                                                                                                                                                                                                        | Р    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Confirm that an input port is provided and can be used to reduce the Active Power output to zero                                                                                                                                                                                                                                                                                                                                                   | Yes  |
| Provide high level description of logic interface, e.g. details in 9.4.4 such as AC or DC signal<br>The DNO logic interface use COM port, control the on and off of D1 and GND by switch. Wher<br>opened, the Power Generating Module can operate normally. When the switch is closed, the Po<br>Generating Module will reduce its active power to zero within 5s. The signal from the Power Ge<br>Module that is being switched is DC(value 12V). | ower |
| Figure 5                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |
| Note:                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |



Annex No. 1 EMC report

No. 96, Guantai Road (Houjie Section), Houjie Town, Dongguan City, Guangdong Province, 523942, People's Republic of China Page 80 of 93

Tel: +86 769 8998 2098 Fax: +86 769 8599 1080 Email: <u>customerservice.dg@bureauveritas.com</u> TRF No. G98/1 VER.2



| Report Number       EMC - TEST REPORT         Report Number       68.760.20.0257.04       Date of Issue: 2022-08-17         Model       SUN2000-6KTL-L1<br>SUN2000-4KTL-L1<br>SUN2000-4KTL-L1<br>SUN2000-4KTL-L1       Date of Issue: 2022-08-17         Product Type       SOlar Inverter         Applicant       I Huawei Technologies Co., Ltd.         Address       Administration Building, Headquarters of Huawei Technologies         Co., Ltd., Bantian, Longgang District, Shenzhen, 518129, P.R.         Manufacturer       Huawei Technologies Co., Ltd.         Address       Co., Ltd., Bantian, Longgang District, Shenzhen, 518129, P.R.         Test Result       Positive         Total pages including<br>Appendices       55         Any use for advertising appresses must be granted in writing. This technical report may only be guoted in fur<br>singulation, Conget and production. For further details, please see testing and<br>cartification regulation, chapter A-3.4.                                                                                                                                                                                                                                                                                                                                                                                                                                     | _            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| Report Number       :       68.760.20.0257.04       Date of Issue: 2022-08-17         Model       ::       SUN2000-6KTL-L1<br>SUN2000-6KTL-L1<br>SUN2000-4KTL-L1<br>SUN2000-3KTL-L1<br>SUN2000-3KTL-L1       SUN2000-4KTL-L1<br>SUN2000-3KTL-L1         Product Type       ::       Solar Inverter         Applicant       ::       Huawei Technologies Co., Ltd.         Address       ::       Administration Building, Headquarters of Huawei Technologies         Co., Ltd., Bantian, Longgang District, Shenzhen, 518129, P.R.         Manufacturer       :       Huawei Technologies Co., Ltd.         Address       :       Administration Building, Headquarters of Huawei Technologies         Co., Ltd., Bantian, Longgang District, Shenzhen, 518129, P.R.       Co., Ltd., Bantian, Longgang District, Shenzhen, 518129, P.R.         Test Result       :       • Positive       • Negative         Total pages including<br>Appendices       :       55         Any use for advertising purposes must be granted in writing. This technical report may only be quoted in fur<br>This report is the result of a single examination of the object in question and is not generally applicable<br>evaluation of the quality of other products in regular productor. For further details, please see testing and<br>evaluation of the quality of other products in regular productor. To further details, please see testing and |              |
| Model       :       SUN2000-6KTL-L1<br>SUN2000-5KTL-L1<br>SUN2000-4.6KTL-L1<br>SUN2000-3KTL-L1<br>SUN2000-3KTL-L1<br>SUN2000-3KTL-L1         Product Type       :       Solar Inverter         Applicant       :       Huawei Technologies Co., Ltd.         Address       :       Administration Building, Headquarters of Huawei Technologies         Co., Ltd., Bantian, Longgang District, Shenzhen, 518129, P.R.         Manufacturer       :       Huawei Technologies Co., Ltd.         Address       :       Administration Building, Headquarters of Huawei Technologies         Co., Ltd., Bantian, Longgang District, Shenzhen, 518129, P.R.       Manufacturer         Test Result       :       Positive         Test Result       :       Positive         Total pages including<br>Appendices       :       55         Any use for advertising purposes must be granted in writing. This technical report may only be quoted in fur<br>this report is the result of a single examination of the object in question and is not generally applicable<br>evaluation of the replauted in single parguardus applicable.                                                                                                                                                                                                                                                                                                         |              |
| SUN2000-5KTL-L1         SUN2000-4,6KTL-L1         SUN2000-3,68KTL-L1         SUN2000-3KTL-L1         SUN2000-2KTL-L1         SUN2000-2KTL-L1         SUN2000-2KTL-L1         Product Type         :       Solar Inverter         Applicant         :       Huawei Technologies Co., Ltd.         Address       :         Co., Ltd., Bantian, Longgang District, Shenzhen, 518129, P.R.         Manufacturer       :         :       Huawei Technologies Co., Ltd.         Address       :         :       Administration Building, Headquarters of Huawei Technologies         Co., Ltd., Bantian, Longgang District, Shenzhen, 518129, P.R.         Manufacturer       :         :       Address         :       Address         :       Address         :       Address         :       Address         :       Positive         :       Negative         :       Positive         :       Negative         :       :         :       Station         :       :         :       :         :       :                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |
| Applicant       : Huawei Technologies Co., Ltd.         Address       : Administration Building, Headquarters of Huawei Technologie         Co., Ltd., Bantian, Longgang District, Shenzhen, 518129, P.R         Manufacturer       : Huawei Technologies Co., Ltd.         Address       : Administration Building, Headquarters of Huawei Technologie         Co., Ltd., Bantian, Longgang District, Shenzhen, 518129, P.R         Address       : Administration Building, Headquarters of Huawei Technologie         Co., Ltd., Bantian, Longgang District, Shenzhen, 518129, P.R         Test Result       : Positive         Total pages including<br>Appendices       : 55         Any use for advertising purposes must be granted in writing. This technical report may only be quoted in fur<br>This report is the result of a single examination of the object in question and is not generally applicable<br>evaluation of the quality of other products in regular production. For further details, please see testing and                                                                                                                                                                                                                                                                                                                                                                                                   |              |
| Address       : Administration Building, Headquarters of Huawei Technologie         Co., Ltd., Bantian, Longgang District, Shenzhen, 518129, P.R         Manufacturer       : Huawei Technologies Co., Ltd.         Address       : Administration Building, Headquarters of Huawei Technologie         Co., Ltd., Bantian, Longgang District, Shenzhen, 518129, P.R         Address       : Administration Building, Headquarters of Huawei Technologie         Co., Ltd., Bantian, Longgang District, Shenzhen, 518129, P.R         Test Result       : Positive         Total pages including         Appendices       : 55         Any use for advertising purposes must be granted in writing. This technical report may only be quoted in fur         This report is the result of a single examination of the object in question and is not generally applicable evaluation of the quality of other products in regular production. For further details, please see testing and                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |
| Co., Ltd., Bantian, Longgang District, Shenzhen, 518129, P.R.         Manufacturer       : Huawei Technologies Co., Ltd.         Address       : Administration Building, Headquarters of Huawei Technologies         Co., Ltd., Bantian, Longgang District, Shenzhen, 518129, P.R.         Test Result       : Positive         Total pages including         Appendices       : 55         Any use for advertising purposes must be granted in writing. This technical report may only be quoted in fur This report is the result of a single examination of the object in question and is not generally applicable evaluation of the quality of other products in regular production. For further details, please see testing and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u>, (;;</u> |
| Manufacturer       : Huawei Technologies Co., Ltd.         Address       : Administration Building, Headquarters of Huawei Technologie         Co., Ltd., Bantian, Longgang District, Shenzhen, 518129, P.R         Test Result       : Positive         Total pages including<br>Appendices       : 55         Any use for advertising purposes must be granted in writing. This technical report may only be quoted in fur<br>This report is the result of a single examination of the object in question and is not generally applicable<br>evaluation of the quality of other products in regular production. For further details, please see testing and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8            |
| Address       : Administration Building, Headquarters of Huawei Technologie         Co., Ltd., Bantian, Longgang District, Shenzhen, 518129, P.R         Test Result       : Positive         Total pages including<br>Appendices       : S5         Any use for advertising purposes must be granted in writing. This technical report may only be quoted in fur<br>This report is the result of a single examination of the object in question and is not generally applicable<br>evaluation of the quality of other products in regular production. For further details, please see testing and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | С            |
| Co., Ltd., Bantian, Longgang District, Shenzhen, 518129, P.R         Test Result       Positive         Total pages including         Appendices       55         Any use for advertising purposes must be granted in writing. This technical report may only be quoted in fu         This report is the result of a single examination of the object in question and is not generally applicable         evaluation of the quality of other products in regular production. For further details, please see testing and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ====2        |
| Test Result       :       Positive       Negative         Total pages including<br>Appendices       :       55         Any use for advertising purposes must be granted in writing. This technical report may only be quoted in fur<br>This report is the result of a single examination of the object in question and is not generally applicable<br>evaluation of the quality of other products in regular production. For further details, please see testing and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3            |
| Appendices       55         Any use for advertising purposes must be granted in writing. This technical report may only be quoted in fur         This report is the result of a single examination of the object in question and is not generally applicable evaluation of the quality of other products in regular production. For further details, please see testing and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <u>c</u>     |
| This report is the result of a single examination of the object in question and is not generally applicable<br>evaluation of the quality of other products in regular production. For further details, please see testing and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3            |
| EMC_SZ_FR_11.02 E-I     TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch     Page 1 o       Release 2017-05-17     Building 128.13, Zhiheng Wisdomitand Business Park, Guankou Erlu, Nantou, Nanshan District,<br>Shenzhen City, 518052, P. R. China Tel. +86 755 8828 6998, Fax: +86 755 8828 6299     Page 1 o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 55           |



| ricpon | Number: 68.760.20.0257.04                                        |  |
|--------|------------------------------------------------------------------|--|
| Conte  | <u>nt</u>                                                        |  |
| 2.1    | Notes                                                            |  |
| 2.2    | Applied Standard                                                 |  |
| 2.3    | Test Location                                                    |  |
| 2.4    | Details of Applicant                                             |  |
| 2.5    | Application Details                                              |  |
| 2.6    | Test Environment Condition                                       |  |
| 4.1    | General Description                                              |  |
| 4.2    | Specification                                                    |  |
| 4.3    | Board                                                            |  |
| 5.1    | Ports and Cables                                                 |  |
| 5.2    | Auxiliary Equipment                                              |  |
| 5.3    | Test Configurations and mode                                     |  |
| 5.4    | Test Condition and Connection                                    |  |
| 6.1    | Performance Criterion CT&CR (Continuous Phenomena)               |  |
| 6.2    | Performance Criterion TT&TR (Transient Phenomena).               |  |
| 6.3    | Performance Criterion A                                          |  |
| 6.4    | Performance Criterion B                                          |  |
| 6.5    | Performance Criterion C                                          |  |
| 7.1    | Radiated Emission 30 MHz to 6 GHz                                |  |
| 7.2    | Conducted Disturbance 0.15 MHz to 30 MHz                         |  |
| 7.3    | Current Harmonics Emissions                                      |  |
| 7.4    | Voltage Fluctuations and Flicker                                 |  |
| 8.1    | Electrostatic Discharge                                          |  |
| 8.2    | Immunity to Radiated Electric Fields 80 MHz to 6000 MHz.         |  |
| 8.3    | Immunity to Electrical Fast Transient Bursts                     |  |
| 8.4    | Immunity to Surges                                               |  |
| 8.5    | Immunity to Continuous Conducted Interference 0.15 MHz to 80 MHz |  |
| 8.6    | Immunity to Power Frequency Magnetic Field                       |  |
| 8.7    | Immunity to Voltage Dips and Short Interruption of AC Power Port |  |
| 11.1   | Radiated Emission                                                |  |
| 11.2   | Conducted Disturbance                                            |  |
| 11.3   | Current Harmonics                                                |  |
| 11.4   | Voltage Fluctuation and Flicker                                  |  |
| 12.1   | Emissions                                                        |  |
| 12.2   | Immunity                                                         |  |
|        |                                                                  |  |
|        |                                                                  |  |
|        |                                                                  |  |
|        |                                                                  |  |
|        |                                                                  |  |
|        |                                                                  |  |



#### Report Number: 68.760.20.0257.04

#### 1 Report Version

| No. | Last Report No.   | Modification Description                                                                 |
|-----|-------------------|------------------------------------------------------------------------------------------|
| 1   | N/A               | First report                                                                             |
| 2   | 68.760.20.0257.01 | Add a new model SUN2000-6KTL-L1, and a new configuration TC2, refer to section 4.2, 5.3; |
| 3   | 68.760.20.0257.02 | Update the standards versions                                                            |

EMC\_SZ\_FR\_11.02 E-I Release 2017-05-17 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13, Zhih eng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen City, 518052, P. R. China Tel. +86 755 8828 6998, Fax: +86 755 8828 5299

Page 3 of 55

No. 96, Guantai Road (Houjie Section), Houjie Town, Dongguan City, Guangdong Province, 523942, People's Republic of China Page 83 of 93







Report Number: 68.760.20.0257.04

| 2.2 Applied Standard      |                                                                                                              |
|---------------------------|--------------------------------------------------------------------------------------------------------------|
| Applied Product Standard: | CISPR 11:2015+A1:2016(Group 1)                                                                               |
|                           | EN 55011:2016                                                                                                |
|                           | EN 55011:2016/A1:2017,<br>EN 55011:2016/A11:2020                                                             |
|                           | IEC 62920:2017 / EN 62920:2017+A11:2020                                                                      |
|                           | IEC 61000-6-1:2005/EN 61000-6-1:2007                                                                         |
|                           | IEC 61000-6-2:2005/EN 61000-6-2:2005                                                                         |
|                           | IEC 61000-6-3:2006+A1:2010/EN 61000-6-3:2007+A1:2011<br>IEC 61000-6-4:2006+A1:2010/EN 61000-6-4:2007+A1:2011 |
|                           | ETSI EN 301 489-1 V2.2.3:2019                                                                                |
|                           | ETSI EN 301 489-17 V3.2.4:2020                                                                               |
|                           | IEC 61000-3-2:2014/EN 61000-3-2:2014                                                                         |
|                           | IEC 61000-3-3:2013/EN 61000-3-3:2013                                                                         |
|                           | IEC 61000-3-11:2000/EN 61000-3-11:2000                                                                       |
|                           | IEC 61000-3-12:2011/EN 61000-3-12:2011                                                                       |
| Test Methods:             | IEC 61000-4-2:2008                                                                                           |
|                           | IEC 61000-4-3:2010                                                                                           |
|                           | IEC 61000-4-4:2012                                                                                           |
|                           | IEC 61000-4-5:2014+A1:2017                                                                                   |
|                           | IEC 61000-4-6:2013                                                                                           |
|                           | IEC 61000-4-8:2009<br>IEC 61000-4-11:2004                                                                    |
|                           | IEC 61000-4-34:2005                                                                                          |
| 2.3 Test Location         |                                                                                                              |
| Test Location 1:          | Reliability Laboratory of Huawei Technologies Co., Ltd.                                                      |
| Address:                  | No.127, Jinye Road, Xi'an High-Tech Development District,                                                    |
|                           | Xi'an,710077,P.R.C                                                                                           |
| Test Location 2:          | Reliability Laboratory of Huawei Technologies Co., Ltd.                                                      |
| Address:                  | No.2222, Xin Jingiao Road, Pudong New Area, Shanghai, 201206,                                                |
|                           | P.R.C                                                                                                        |
| 2.4 Details of Applicant  |                                                                                                              |
| Applicant:                | Huawei Technologies Co., Ltd.                                                                                |
| Address:                  | Administration Building, Headquarters of Huawei Technologies Co                                              |
|                           | Ltd., Bantian, Longgang District, Shenzhen, 518129, P.R.C                                                    |
| Product Name:             | Solar Inverter                                                                                               |
| Product Model:            | SUN2000-6KTL-L1                                                                                              |
|                           | SUN2000-5KTL-L1                                                                                              |
|                           | SUN2000-4.6KTL-L1                                                                                            |
|                           | SUN2000-4KTL-L1                                                                                              |
|                           | SUN2000-3.68KTL-L1                                                                                           |
|                           | SUN2000-3KTL-L1                                                                                              |
|                           | SUN2000-2KTL-L1                                                                                              |
| Test report Number:       | SYBH(E)06562837EA                                                                                            |



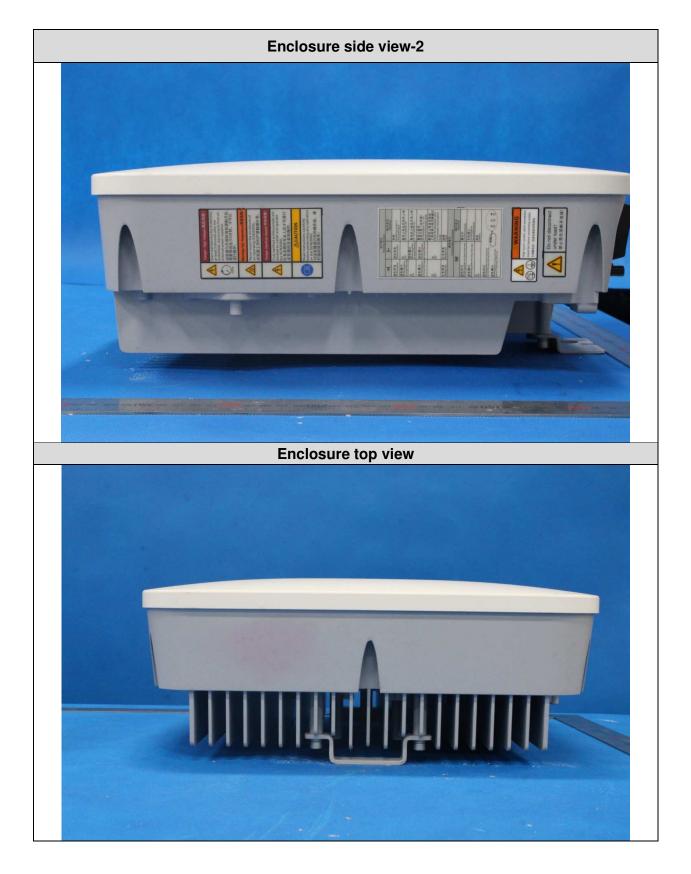
| 2.5 Application Details         Date of Receipt Test Item:       2020-06-09         Start Date of Test:       2020-07-04         2.6 Test Environment Condition         Ambient Temperature:       20-25°C         Relative Humidity:       45-55%         Atmospheric Pressure:       101kPa |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Date of Receipt Test Item:         2020-06-09           Start Date of Test:         2020-06-10           End Date of Test:         2020-07-04           2.6         Test Environment Condition           Ambient Temperature:         20-25°C           Relative Humidity:         45-55%     |  |
| End Date of Test:     2020-07-04       2.6     Test Environment Condition       Ambient Temperature:     20-25°C       Relative Humidity:     45-55%                                                                                                                                          |  |
| 2.6       Test Environment Condition         Ambient Temperature:       20–25°C         Relative Humidity:       45–55%                                                                                                                                                                       |  |
| Ambient Temperature:20–25°CRelative Humidity:45–55%                                                                                                                                                                                                                                           |  |
| Relative Humidity: 45–55%                                                                                                                                                                                                                                                                     |  |
|                                                                                                                                                                                                                                                                                               |  |
| Atmospheric Pressure: 101kPa                                                                                                                                                                                                                                                                  |  |
|                                                                                                                                                                                                                                                                                               |  |
|                                                                                                                                                                                                                                                                                               |  |
|                                                                                                                                                                                                                                                                                               |  |
|                                                                                                                                                                                                                                                                                               |  |

Release 2017-05-17

TUV SUD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12813, Zhihengy Wiskomiand Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen City, S18052, P. R. China Tel. +86 755 8828 6998, Fax; +86 755 8828 5299



# Annex No. 2 Pictures of the unit



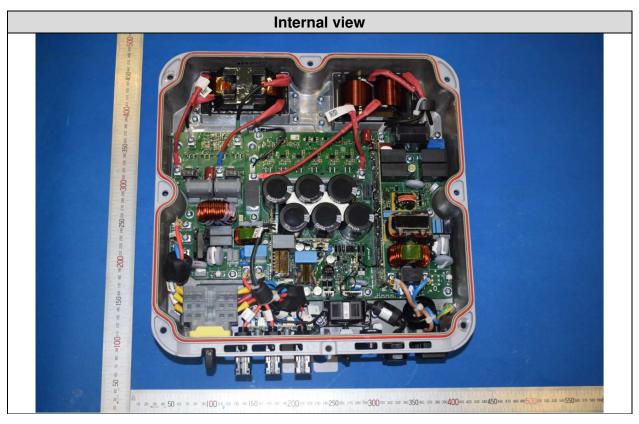



No. 96, Guantai Road (Houjie Section), Houjie Town, Dongguan City, Guangdong Province, 523942, People's Republic of China Page 88 of 93

Tel: +86 769 8998 2098 Fax: +86 769 8599 1080 Email: <u>customerservice.dg@bureauveritas.com</u>






No. 96, Guantai Road (Houjie Section), Houjie Town, Dongguan City, Guangdong Province, 523942, People's Republic of China Page 89 of 93 Tel: +86 769 8998 2098 Fax: +86 769 8599 1080 Email: <u>customerservice.dg@bureauveritas.com</u>





No. 96, Guantai Road (Houjie Section), Houjie Town, Dongguan City, Guangdong Province, 523942, People's Republic of China Page 90 of 93 Tel: +86 769 8998 2098 Fax: +86 769 8599 1080 Email: <u>customerservice.dg</u>@bureauveritas.com







Annex No. 3 Test Equipment list



| Equipment                                            | Internal No. | Manufacturer | Туре         | Serial No.    | Next<br>Calibration |
|------------------------------------------------------|--------------|--------------|--------------|---------------|---------------------|
| Power<br>Analyzer                                    | A4080002DG   | YOKOGAWA     | WT3000       | 91M210852     | Jul. 21, 2024       |
| Power<br>Analyser                                    | A4080004DG   | DEWESoft     | Х            | DB19104221    | Jul. 21, 2024       |
| AC Source                                            | A7040019DG   | Chroma       | 61512        | 61512000439   |                     |
|                                                      | A7040015DG   | Chroma       | 62150H-1000S | 62150EF00488  | Monitored by        |
| DC Simulation                                        | A7040016DG   | Chroma       | 62150H-1000S | 62150EF00490  | Power               |
| Power Supply                                         | A7040017DG   | Chroma       | 620028       | 620028EF00120 | Analyzer            |
| · · · · · · · · · · · · · · · · · · ·                | A7040021DG   | Chroma       | 62150H-1000S | 62150EF00609  |                     |
|                                                      | A7040022DG   | Chroma       | 62150H-1000S | 62150EF00595  |                     |
| RLC Load                                             | A7150027DG   | Qunling      | ACLT-3803H   | 93VOO2869     |                     |
|                                                      | A1060007DG   | YOKOGAWA     | CT200        | 1130700012    | Jul. 16, 2024       |
|                                                      | A1060008DG   | YOKOGAWA     | CT200        | 1130700017    | Jul. 16, 2024       |
| Current                                              | A1060009DG   | YOKOGAWA     | CT200        | 1130700019    | Jul. 16, 2024       |
| transducer                                           | A10600010DG  | YOKOGAWA     | CT200        | 1130700016    | Jul. 16, 2024       |
|                                                      | A10600011DG  | YOKOGAWA     | CT200        | 1130700011    | Jul. 16, 2024       |
|                                                      | A10600012DG  | YOKOGAWA     | CT200        | 1130700018    | Jul. 16, 2024       |
| Eight Channel<br>Digital<br>Phosphor<br>Oscilloscope | A4089017DG   | YOKOGAWA     | DL850        | 91N726247     | Jul. 11, 2024       |
| Oscilloscope<br>probe                                | A1490008DG   | YOKOGAWA     | 701901       | //            | Jul. 18, 2024       |
| Oscilloscope<br>probe                                | A1490009DG   | YOKOGAWA     | 701901       | //            | Jul. 18, 2024       |
| Oscilloscope<br>probe                                | A1490010DG   | YOKOGAWA     | 701901       | //            | Jul. 18, 2024       |
| Oscilloscope<br>probe                                | A1490011DG   | YOKOGAWA     | 701901       | //            | Jul. 18, 2024       |
| Temp. & Humi.<br>Recorder                            | A7440034DG   | HUATO        | S580-TH      | HT20103923    | Jan. 31, 2024       |

## Dates of performance test: 2023-10-24 to 2023-11-22

--End of Test Report--