

TR170920S

Page 1 of 7

G83/2 Appendix 4 Type Verification Test Report

Type Approval and manufacturer/supplier declaration of compliance with the requirements of Engineering Recommendation G83/2. Photovoltaic Grid-tied inverter SSEG Type reference number SSEG Type X1-Hybrid-3.0-N-C; X1-Hybrid-3.7-N-C X1-Hybrid-3.0-N-E; X1-Hybrid-3.7-N-E X1-Hybrid-3.0-N -I; X1-Hybrid-3.7-N-I X1-Hybrid-3.0-D-C; X1-Hybrid-3.7-D-C X1-Hybrid-3.0-D-E; X1-Hybrid-3.7-D-E X1-Hybrid-3.0-D-I; X1-Hybrid-3.7-D-I X1-Fit-3.7C; X1-Fit-3.7E; X1-Fit-3.7I System Supplier name Solax power Co., Ltd Room 220, West Buliding A, National University Science Address and Technology Park of Zhejiang University 525, Xixi Rd, Hangzhou, Zhejiang Province, China, 310007 Tel +86(0571)-56260011 +86(0571)-56075753 Fax E:mail info@soalxpower.com Web site www.solaxpower.com Connection Option 3.0 kW single phase system Maximum rated capacity, 3.7 kW single phase system use separate sheet if NA kW two phases in three phase system more than one NA kW two phases split phase system connection option. SSEG manufacturer/supplier declaration. I certify on behalf of the company named above as a manufacturer/supplier of Small Scale Embedded Generators, that all products manufactured/supplied by the company with the above SSEG Type reference number will be manufactured and tested to ensure that they perform as stated in this Type Verification Test Report, prior to shipment to site and that no site modifications are required to ensure that the product meets all the requirements of G83/2. On behalf of Solax power Co., Ltd Signed namei TINO Note that testing can be done by the manufacturer of an individual component, by an external test house, or by the supplier of the complete system, or any combination of them as appropriate. Where parts of the testing are carried out by persons or organisations other than the supplier then the supplier shall keep copies of all test records and results supplied to them to verify that the testing has been carried out by people with sufficient technical competency to carry out the tests.

TR170920S

Page 2 of 7

Power Quality. Harmonics. The requirement is specified in section 5.4.1, test procedure in Annex A or B 1.4.1							
Annex A or	D 1.4.1 SSEG rating r	er phase (rpp)	3.0	kW		NV-MV*3 68/rnn	
Harmonic	At 50%	of rated output	100% (of rated output		1 (v = i(v = j .00/1pp	
marmonie	Measured	Normalised	Measured	Normalised	Limit in	Higher limit for	
	Value	Value	Value	Value	BS EN	odd harmonics 21	
	(MV) in	(NV) in	(MV) in	(NV) in	61000-	and above	
	Amps	Amps	Amps	Amps	3-2 in		
	1	1	1	1	Amps		
2	0.0225	0.0276	0.0588	0.0721	1.0800		
3	0.1869	0.2293	0.1624	0.1992	2.3000		
4	0.0250	0.0307	0.0259	0.0318	0.4300		
5	0.1087	0.1333	0.0795	0.0975	1.1400		
6	0.0077	0.0094	0.0075	0.0092	0.3000		
7	0.0669	0.0821	0.0392	0.0481	0.7700		
8	0.0039	0.0048	0.0072	0.0088	0.2300		
9	0.0574	0.0704	0.0361	0.0443	0.4000		
10	0.0057	0.0070	0.0046	0.0056	0.1840		
11	0.0268	0.0329	0.0205	0.0251	0.3300		
12	0.0040	0.0049	0.0053	0.0065	0.1530		
13	0.0354	0.0434	0.0267	0.0328	0.2100		
14	0.0034	0.0042	0.0043	0.0053	0.1310		
15	0.0206	0.0253	0.0185	0.0227	0.1500		
16	0.0031	0.0038	0.0041	0.0050	0.1150		
17	0.0258	0.0316	0.0179	0.0220	0.1320		
18	0.0039	0.0048	0.0031	0.0038	0.1020		
19	0.0173	0.0212	0.0185	0.0227	0.1180		
20	0.0034	0.0042	0.0073	0.0090	0.0920		
21	0.0175	0.0215	0.0152	0.0186	0.1070	0.160	
22	0.0046	0.0056	0.0039	0.0048	0.0840		
23	0.0161	0.0197	0.0185	0.0227	0.0980	0.147	
24	0.0024	0.0029	0.0050	0.0061	0.0770		
25	0.0106	0.0130	0.0105	0.0129	0.0900	0.135	
26	0.0037	0.0045	0.0032	0.0039	0.0710		
27	0.0133	0.0163	0.0142	0.0174	0.0830	0.124	
28	0.0024	0.0029	0.0039	0.0048	0.0660		
29	0.0070	0.0086	0.0106	0.0130	0.0780	0.117	
30	0.0020	0.0025	0.0031	0.0038	0.0610		
31	0.0104	0.0128	0.0111	0.0136	0.0730	0.109	
32	0.0018	0.0022	0.0023	0.0028	0.0580		
33	0.0081	0.0099	0.0134	0.0164	0.0680	0.102	
34	0.0023	0.0028	0.0035	0.0043	0.0540		
35	0.0089	0.0109	0.0106	0.0130	0.0640	0.096	
36	0.0019	0.0023	0.0021	0.0026	0.0510		
37	0.0117	0.0144	0.0179	0.0220	0.0610	0.091	
38	0.0025	0.0031	0.0020	0.0025	0.0480		
39	0.0080	0.0098	0.0122	0.0150	0.0580	0.087	
40	0.0021	0.0026	0.0030	0.0037	0.0460		
Note the hig	her limits for	odd harmonics (21 and above a	are only allowa	ble under c	ertain conditions.	

Note the higher limits for odd harmonics 21 and above are only allowable under certain conditions, if these higher limits are utilised please state the exemption used as detailed in part 6.2.3.4 of BS EN

MATERIALS & SAFETY – R&D 61000-3-2 in the box below. TR170920S

Page 3 of 7

Power Quality. Harmonics. The requirement is specified in section 5.4.1, test procedure in Annex A or B 1 4 1							
	SEG rating r	per phase (rpp)	37	kW		NV=MV*3 68/rpp	
Harmonic	At 50%	of rated output	100% (of rated output		100/1pp	
Tharmonie	Measured	Normalised	Measured	Normalised	Limit in	Higher limit for	
	Value	Value	Value	Value	BS EN	odd harmonics 21	
	(MV) in	(NV) in	(MV) in	(NV) in	61000-	and above	
	Amps	Amps	Amps	Amps	3-2 in		
	1 mps	·	p.:	po	Amps		
2	0.0362	0.0360	0.0711	0.0707	1.080		
3	0.1759	0.1749	0.1771	0.1761	2.300		
4	0.0234	0.0233	0.0280	0.0278	0.430		
5	0.0952	0.0947	0.0738	0.0734	1.140		
6	0.0049	0.0049	0.0096	0.0095	0.300		
7	0.0563	0.0560	0.0338	0.0336	0.770		
8	0.0044	0.0044	0.0069	0.0069	0.230		
9	0.0522	0.0519	0.0318	0.0316	0.400		
10	0.0064	0.0064	0.0098	0.0097	0.184		
11	0.0217	0.0216	0.0226	0.0225	0.330		
12	0.0048	0.0048	0.0048	0.0048	0.153		
13	0.0338	0.0336	0.0234	0.0233	0.210		
14	0.0030	0.0030	0.0073	0.0073	0.131		
15	0.0222	0.0221	0.0193	0.0192	0.150		
16	0.0027	0.0027	0.0045	0.0045	0.115		
17	0.0252	0.0251	0.0155	0.0154	0.132		
18	0.0033	0.0033	0.0034	0.0034	0.102		
19	0.0169	0.0168	0.0171	0.0170	0.118		
20	0.0028	0.0028	0.0035	0.0035	0.092		
21	0.0180	0.0179	0.0112	0.0111	0.107	0.160	
22	0.0036	0.0036	0.0033	0.0033	0.084		
23	0.0217	0.0216	0.0150	0.0149	0.098	0.147	
24	0.0069	0.0069	0.0035	0.0035	0.077		
25	0.0151	0.0150	0.0108	0.0107	0.090	0.135	
26	0.0038	0.0038	0.0034	0.0034	0.071		
27	0.0159	0.0158	0.0129	0.0128	0.083	0.124	
28	0.0026	0.0026	0.0059	0.0059	0.066		
29	0.0103	0.0102	0.0105	0.0104	0.078	0.117	
30	0.0024	0.0024	0.0073	0.0073	0.061		
31	0.0127	0.0126	0.0116	0.0115	0.073	0.109	
32	0.0026	0.0026	0.0048	0.0048	0.058		
33	0.0105	0.0104	0.0125	0.0124	0.068	0.102	
34	0.0025	0.0025	0.0025	0.0025	0.054		
35	0.0105	0.0104	0.0096	0.0095	0.064	0.096	
36	0.0022	0.0022	0.0025	0.0025	0.051		
37	0.0125	0.0124	0.0177	0.0176	0.061	0.091	
38	0.0020	0.0020	0.0032	0.0032	0.048		
39	0.0094	0.0093	0.0137	0.0136	0.058	0.087	
40	0.0028	0.0028	0.0040	0.0040	0.046		
Note the hig	her limits for	odd harmonics 2	21 and above	are only allowa	ble under d	certain conditions, if	
these higher	r limits are uti	ilised please sta	te the exempt	ion used as de	tailed in pa	art 6.2.3.4 of BS EN	
61000-3-2 ir	n the box belo	W.					

TR170920S

Page 4 of 7

Power Quality	Power Quality. Voltage fluctuations and Flicker. The requirement is specified in section							
5.4.2, lest proce	Starting		D 1.4.3	Stopping	3		Running	
	d _{max}	d _c	d _(t)	d _{max}	d _c	d _(t)	P _{st}	P _{lt} 2 hours
Measured Values	0.63%	0.04%	0%	0.1%	0.09%	0%	0.29	0.16
Normalised to NA							NA	
Limits set under BS EN 61000-3-3	Limits set 4% 3.3% 3.3% 4% 3.3% 3.3% 1.0 0.65 under BS EN 61000-3-3							
Test start date 2017-05-10 Test end date 2017-05-10								
Test location	Test location Building 4, No. 518, Xinzhuan Road, Caohejing Songjiang High- Tech Park, Shanghai, P.R. China (201705)							

Power quality. DC injection. The requirement is specified in section 5.5, test procedure in Annex A or B 1.4.4 3.0kW

3.0kW								
Test power level	10%	55%	100%					
Recorded value	2.9mA	11.3mA	21.6mA					
as % of rated AC current	0.022%	0.086%	0.166%					
Limit	0.25%	0.25%	0.25%					

Power quality. DC injection. The requirement is specified in section 5.5, test procedure in Annex A or B 1.4.4

3.7kW									
Test power level	10%	55%	100%						
Recorded value	5.3mA	17.2mA	17.4mA						
as % of rated AC current	0.033%	0.107%	0.108%						
Limit	0.25%	0.25%	0.25%						

Power Quality. Power factor. The requirement is specified in section 5.6, test procedure in Annex A or B 1.4.2

			3.0kW	
	216.2V	230V	253V	Measured at three voltage levels and at full
				output. Voltage to be maintained within
Measured	0.998	0.998	0.998	±1.5% of the stated level during the test.
value				
Limit	>0.95	>0.95	>0.95	

MATERIALS & SAFETY - R&D TR170920S Page 5 of 7 Power Quality. Power factor. The requirement is specified in section 5.6, test procedure in Annex A or B 1.4.2 3.7kW 216.2V 230V 253V Measured at three voltage levels and at full Measured output. Voltage to be maintained within 0.998 0.998 0.998 value $\pm 1.5\%$ of the stated level during the test. Limit >0.95 >0.95 >0.95

Protection. Frequency tests								
Function	Setting		Trip test		"No-trip tests"	1		
	Frequency	Time delay	Frequency	Time delay	Frequency /time	Confirm no trip		
O/F stage 1	51.5Hz	90s	51.55 Hz	90.60 s	51.3Hz 95s	no trip		
O/F stage 2	52Hz	0.5s	52.05 Hz	0.580 s	51.8Hz 89.98s	no trip		
					52.2Hz 0.48s	no trip		
U/F stage 1	47.5Hz	20s	47.45 Hz	20.5 s	47.7Hz 25s	no trip		
U/F stage 2	47Hz	0.5s	46.95 Hz	0.590s	47.2Hz 19.98s	no trip		
					46.8 Hz 0.48s	no trip		
Note. For free	quency Trip tes	sts the Fre	quency require	ed to trip is the	setting ± 0.1	Hz. In order to		

measure the time delay a larger deviation than the minimum required to operate the projection can be used.. The "No-trip tests" need to be carried out at the setting \pm 0.2Hz and for the relevant times as shown in the table above to ensure that the protection will not trip in error.

Protection. Voltage tests								
Function	Setting		Trip test		"No trip-tests"	All phases at		
					same voltage			
	Voltage	Time	Voltage	Time delay	Voltage /time	Confirm		
		delay				no trip		
O/V stage 1	262.21/	1.05	262.81/	1.00 c	258.2V	no trin		
	202.20	1.05	202.00	1.09.5	2.0 s	no inp		
O/V stage 2	273 7\/	0.55	273.0\/	0.570c	269.7V	no trin		
	275.70	0.55	215.90	0.5705	0.98s	no inp		
					277.7V	no trin		
					0.48s	no inp		
U/V stage 1	200.11/	2.50	200.1.1/	257 c	204.1V	no trin		
	200.10	2.55	200.1 V	2.57 5	3.5s	no inp		
U/V stage 2	1041/	0.50	1011/	0.5710	188V	no trin		
	104 V	0.55	104 V	0.5715	2.48s	no inp		
					180v	no trin		
					0.48 sec	no uip		

Note. For voltage tests the voltage required to trip is the setting plus or minus 3.45V. The time delay can be measured at a larger deviation than the minimum required to operate the projection. The Notrip tests need to be carried out at the setting $\pm 4V$ and for the relevant times as shown in the table above to ensure that the protection will not trip in error.

MATERIALS & SAFETY – R&D TR170920S

Page 6 of 7

a) Protection. Loss of Mains test and single phase test. The tests are to be carried out at three output power levels plus or minus 5%, an alternative for inverter connected Generating Units can be used instead.

Note as an alternative, inverters can be tested to BS EN 62116. The following sub set of tests should be recorded in the following table.

Test Power	33%	66%	100%	33%	66%	100%
and	-5% Q	-5% Q	-5% P	+5% Q	+5% Q	+5% P
imbalance	Test 22	Test 12	Test 5	Test 31	Test 21	Test 10
Trip time. Limit is 0.5s	0.122s	0.382s	0.342s	0.173s	0.196s	0.166s

b) Protection. Frequency change, Stability test

	Start Frequency	Change	End Frequency	Confirm no trip
Positive Vector Shift	49.5Hz	+9 degrees		no trip
Negative Vector Shift	50.5Hz	- 9 degrees		no trip
Positive Frequency drift	49.5Hz	+0.19Hz/s	51.5Hz	no trip
Negative Frequency drift	50.5Hz	-0.19Hz/s	47.5Hz	no trip

c) Protection. Re-connection timer. The tests should prove that the reconnection sequence starts in no less than 20s for restoration of voltage and frequency to within the stage 1 settings of table 10.5.7.1

Test should prove that the reconnection sequence starts in no less than 20s for restoration of voltage and frequency to within the stage 1 settings of table 10.5.7.1

Time	Measured	Checks on no reconnection when voltage or frequency is brought to just							
delay	delay (s)	outside stage 1 limits of table 10.5.7.1.							
setting									
(s)									
60s	78s	At 266.2V	At 196.1V	At 47.4Hz	At 51.6Hz				
Confirmat	nation that the								
Generatir	ting Unit does No-reconnection No-reconnection No-reconnection No-reconnection								
not re-cor	nnect								

Fault level contribution. The requirement is specified in section 5.7, test procedure in Annex A or B 1.4.6

For a directly coupled SSEG			For a Inverter SSEG			
Parameter	Symbol	Value	Time after	Volts	Amps	
			fault			
Peak Short Circuit current	i _p	NA	20ms	155 V	28.6A	
Initial Value of aperiodic	А	NA	100ms	NA	NA	
current	,,	1473	1001110			
Initial symmetrical short-circuit current*	l _k	NA	250ms	NA	NA	
Decaying (aperiodic)						
component of short circuit	i _{DC}	NA	500ms	NA	NA	
current*						
Reactance/Resistance Ratio of source*	×/ _R	NA	Time to trip	0.557 s	In seconds	

ENGINEERING RECOMMENDATION G83/2

TR170920S

Page 7 of 7

Self-Monitoring solid state switching The requirement is specified in section 5.3.1, No specified test requirements.	Yes/or NA
3.0/3.7kW	
It has been verified that in the event of the solid state switching device failing to disconnect the SSEG, the voltage on the output side of the switching device is reduced to a value below 50 volts within 0.5 seconds.	NA

Additional comments